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CHAPTER 1

Introduction

The main research topic of my thesis is the description of an experiment that uses an EMCCD camera for
the characterization of the spatial correlation in the momentum plane of a Type I BBO non-linear crystal
used as an entangled photon source, in non-collinear geometry.

The primary research motivation is the exploration of the features provided by this EMCCD model for
its future further application in imaging other non-linear phenomena.

Concerning the theoretical background, I shortly introduce the necessary to describe the SPDC process,
the biphoton state in the momentum plane of the far field of the BBO, which is the light propagation inside
a uniaxial birefringent crystal, the phase matching condition and finally how the biphoton angular profile is
affected from the pump beam spatial properties. Further, the thresholding procedure is descibed in detail.

In the experimental analysis, I briefly describe the setup, the results of the figure of merit, of the Reduced
Noise Factor and the correlation measure following two different ways of analysis.
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CHAPTER 2

EMCCD camera

2.1 Operation

Figure 2.1: EMCCD structure. [?]

During the exposure time, photons impinging on the
image sensor area are converted to ’photoelectrons’
according to the quantum efficiency of the sensor in the
photons wavelength. The photoelectrons contained in
each pixel of the image area rows are vertically clocked
downwards, first into the storage area and then into the
512-pixel serial register, row by row with the vertical
shift speed chosen. If CCD mode is chosen, then the
electrons are horizontally shifted to the conventional
ADC output, according to the readout rate chosen. In
Electron Multiplication (EM) mode operation, after the
serial register, electrons are shifted towards the 536-
pixel EM Gain register, where in each one of its stages
a high-voltage clock (higher to vertical and horizontal)
produces a multiplication of the photoelectrons through
a process known as impact ionization. The average
multiplication factor referred to as EM gain, is selected in the software from 4 to 1000.

During the readout process, the signal of the multiplied electrons is converted into a voltage and finally
is digitized by an Analogue to Digital Converter, where the output of each Analogue to Digital Unit (ADU)
is presented as a ’count’ in the signal intensity scale, corresponding to an exact number of electrons
according to the sensitivity chosen (PreAMp). The counts sits on top of an electronic bias offset value, the
so called ’baseline’, where in the iXon Ultra 897 this is clamped at 100 counts in normal operation mode
and 500 in EM. This is the reason that when measuring with the shutter closed, instead of a distribution of
counts around 0, we obtain a mean distribution of 500 counts.

Figure 2.2: Image acquisition process with an EMCCD camera. [?]

Within the multiplication register, the electron shift Voltage from stage to stage is sufficiently high,
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Chapter 2 EMCCD camera

so that the probability an electron is accelerated until it has acquired energy larger than the bandgap in
order to release extra energy to knock an electron out of a bound state is dramatically increased. This
generated secondary electron will be trapped inside the pixel it was born in and it will be shifted together
with the original electron to the next pixels, where both electrons are accelerated now until they have
acquired sufficient energy for the creation of two pairs of electrons and holes.[?], [?] This repetition leads
to a cascade of charge pair creation, an impact ionization where the probability of impact ionization per
shift per electron 𝑝𝑐 is low, 0.10 to 0.13 according to the gain choice, but due to the large number of 𝑛
stages the resulting overall multiplication gain is given by 𝐺 = (1 + 𝑝𝑐)

𝑛, up to three orders of magnitudes.
The EM amplification purpose is to increase the signal well above the readout noise, but the gain of the
multiplication register is random due to the stochastic nature of the impact ionization events. Effectively,
the number of input electrons is multiplied by the total EM gain 𝐺, defining the electric field applied,
choosing 𝐺 = 1000, for 1 electron input we would obtain a 1000 electrons output (rough estimation).

The measured counts can be expressed as

𝑐𝑜𝑢𝑛𝑡𝑠 =
𝜂 · 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 · 𝑔𝑎𝑖𝑛
𝑝𝑟𝑒𝑎𝑚𝑝𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

+ 𝑏𝑖𝑎𝑠𝑜 𝑓 𝑓 𝑠𝑒𝑡

and the photons
𝑝ℎ𝑜𝑡𝑜𝑛𝑠 =

𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑𝑐𝑜𝑢𝑛𝑡𝑠 · 𝑝𝑟𝑒𝑎𝑚𝑝𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 · 𝜂
𝑔𝑎𝑖𝑛

where 𝜂 is the sensor quantum efficiency of the sensor to the impinging light wavelength. The EM output
amplifier is similar to the conventional but is generally faster and hence suffers from increased read noise.

2.2 Noise sources

To calculate the probability of obtaining a number of counts from a pixel if light hits the sensor, we need
a good description of the noise sources contribution. The first noise source originates from the photon
emission itself. The second source is the quantum efficiency of the sensor, which is a stochastic process of
converting a photon to electron or not. The third source stems of spurious charges and the fourth source
is the excess noise introduced by the EM register. Finally, the output amplifier reading out the output
electrons, creates the readout noise. The ADC introduces the so called quantization noise, due to the
transformation of a continuous into discrete values, but is moderate and can be ignored.

2.2.1 Binomial photon absorption

The Binomial distribution describes processes with a given number of identical trials 𝑛 with two random
possible outcomes, either 𝑟 successes with probability 𝑝 and 𝑛 − 𝑟 failures with probability 1 − 𝑝. There
are 2𝑛 possible permutations of success and failure, of which the number with 𝑟 successes is the number
of ways of selecting 𝑟 from 𝑛 is 𝑛𝐶𝑟 =

𝑛!
𝑟!(𝑛 − 𝑟)! , the binomial coefficients. Thus the probability of

successes is

𝑃(𝑟; 𝑝, 𝑛) = 𝑝
𝑟 (1 − 𝑝)𝑛−𝑟 𝑛!

𝑟!(𝑛 − 𝑟)! (2.1)

with mean number of successes < 𝑟 >= 𝑛𝑝 and success variance 𝜎
2
𝑟 = 𝑛𝑝(1 − 𝑝). In the same

manner we can consider the sensor’s quantum efficiency, where a photon impinging on the sensor is
either converted to an electron or not: each photon hitting the image section may cause the emission of
a photoelectron with probability of success equal to the quantum efficiency 𝑞. Thus, the probability of
obtaining 𝑛𝑒 photoelectrons from 𝑛𝑝 photons is given by the Binomial distribution (Eq:??) as

𝑃(𝑛𝑒, 𝑞, 𝑛𝑝) = 𝑞
𝑛𝑒 (1 − 𝑞)𝑛𝑝−𝑛𝑒

𝑛𝑝!
𝑛𝑒!(𝑛𝑝 − 𝑛𝑒)!

(2.2)
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Chapter 2 EMCCD camera

with mean number of successes < 𝑛𝑒 >= 𝑞𝑛𝑝 and variance 𝜎
2
𝑒 = 𝑛𝑝𝑞(1 − 𝑞). [?] [?]

2.2.2 Excess Noise Factor

The downside of the multiplication process results from the statistical variation in the overall number
of electrons generated from an initial electron by the gain register, due to the stochastic nature of the
amplification, as described by Eq??. This uncertainty is called ’Excess Noise Factor’ (ENF) and has
been measured at

√
2 for EMCCDs, without reducing of course the detected electron number. One should

multiply the Shot Noise by ENF when calculating the overall noise, because it has the same form as shot
noise, since it increases the variation of the readout electron number around the mean value, in addition
to the variation that already exists from the shot noise. Practically, it reduces the SNR by

√
2 as if the

quantum efficiency of the sensor was half. A quite simple approach is to consider the EM register stages
as a Poissonian light sources where the independent successful events are the duplication of an electron.

𝑝(𝑥 | 𝑛) = 𝑥
𝑛−1

𝑒
−𝑥/𝑔

𝑔
𝑛 (𝑛 − 1)!

(2.3)

where 𝑛 is the input electron to the EM register, 𝑥 the output multiplied electrons and 𝑔 the overall EM gain.
For an ideal electron multiplier, the output can be described as an exponential distribution in which the
scale is the multiplication gain, when the probability of multiplication is low in every step.[?] The output
is given by Eq ??, where as illustrated in Fig ?? there is no one-to-one mapping between the number of
electrons entering and leaving the multiplication register.

Figure 2.3: Eq?? electron output probability for 1, 2,
3 and 4 input electrons.

The ideal distribution to describe the above process,
would be Poisson distribution which describes cases
where there are particular outcomes but no idea of the
number of trials. If the average number of events within a
time duration is known, one can calculate the probability
of obtaining a particular number of events given the
average number by taking the limit of the binomial
distribution, in which the number of tries 𝑛 become
large while at the same time the probability 𝑝 becomes
small, but with their product constant. Supposing that
on average 𝜆 events would be expected to occur in some
interval, splitting this interval up into 𝑛 very small equal
sections such that the chance of getting two events in one
section can be discounted i.e. like 2 photons impinging
on the same pixel for really small exposure time, then
the probability that a given section contains an event is
𝑝 =

𝜆

𝑛
. Now the probability that there will be 𝑟 events

in the 𝑛 sections, is given by the binomial formula Eq
?? as

𝑃(𝑟;𝜆/𝑛, 𝑛) = (𝜆
𝑛
)𝑟 (1 − 𝜆

𝑛
)𝑛−𝑟 𝑛!

𝑟!(𝑛 − 𝑟)! (2.4)

As 𝑛 −→ ∞ with 𝑟 finite , the factorials give a power of 𝑛

𝑛!
𝑟!(𝑛 − 𝑟)! = 𝑛(𝑛 − 1) (𝑛 − 2)...(𝑛 − 𝑟 + 1) −→ 𝑛

𝑟

𝑟!
and an exponential appears (

1 − 𝜆

𝑛

)𝑛−𝑟
−→

(
1 − 𝜆

𝑛

)𝑛
−→ 𝑒

−𝜆

4



Chapter 2 EMCCD camera

Inserting these two limits in the binomial distribution, we obtain the Poisson probability formula,
describing the probability of obtaining 𝑟 events if the mean expected number is 𝜆

𝑃(𝑟;𝜆) = 𝜆
𝑟
𝑒
−𝜆

𝑟!
(2.5)

The mean number of events is < 𝑟 >= 𝜆 and the variance 𝜎
2
= 𝜆 =< 𝑟 >. The total probability is

∞∑︁
𝑟=0

𝑃(𝑟;𝜆) = 1.

To calculate a series of Poisson probabilities it is convenient to start with 𝑃(0;𝜆) and successively
multiply by 𝜆 while divide by 1, 2, 3, 4.., in order to get 𝑃(1;𝜆),𝑃(2;𝜆),𝑃(3;𝜆)...
𝑃(0; 1) = 𝑃(1; 1) = 0.368.

For 𝜆 below 1, the most probable result is 0, explaining why 𝑃(1) is decreasing monotonically and does
not start from 0. For higher values of 𝜆, a peak develops slightly below the mean (𝜆). Specifically, for
integer 𝜆, 𝑟 = 𝜆 and 𝑟 = 𝜆 − 1 are equally probable.

The above behaviour is clearly illustrated in Fig ?? assuming that x axis is 𝑟 · 1000 and each peak a
𝜆).[?]

2.2.3 Dark current

Another source of noise is the thermally generated electrons in the silicon, referred to as the dark current,
strongly dependent on the sensor temperature and exposure time. It is considered negligible after cooling
the sensor since it falls exponentially with cooling. Andor assures that for fast frame rate experiments and
cooling below, 0C it can be ignored. Dark electrons are indistinguishable from photoelectrons, hence
they are amplified in the gain register if existent. Thermal radiation is described by a Poisson distribution,
so dark current is also a Poissonian noise source. Our camera spec sheet concerning the minimum dark
current achievable indicates 0.0002 events per pixel per second, thus we will consider it negligible for
exposures in the ms range.

2.2.4 Shot noise

Assuming the emission of photons produced in a coherent light source as individual independent emission
processes, the emitted photon number 𝑛 is a random variable with Poisson distribution, 𝑃(𝑛𝑝;𝜆) according
to Eq:?? with mean photon number < 𝑛𝑝 >= 𝜆 and 𝜎

2
𝑝 = 𝜆 =< 𝑛𝑝 >. Hence, the probability of photons

impinging the detector is Poissonian.[?] Photon shot noise is an inevitable source of noise. [?][?]

2.2.5 Spurious Noise

CIC

An electron generated during charge shifting is the Clock Induced Charge (CIC), a spurious noise
source practically independent of exposure time and indistinguishable from photoelectrons during the
amplification within the gain register.

I would like to point out here the difference between the creation origin of the thermal and CIC electrons.
The silicon sensor surface is populated with holes that the thermally generated electrons can recombine
with, before they reach the pixel well, counted as dark current. What generates the CIC is the movement
of the holes during the vertical or horizontal transfer. Further, at low exposures CIC dominates while at
longer the dark current. When using EMCCDs in single photon detection levels, what actually defined the
detection limit is not the readout noise, but the CIC due to their indistinguishability with the true photons.
Where are the CIC more likely to appear is extensively analysed in [?], where they proved that horizontal
CIC dominates over vertical CIC. To eliminate the vertical and horizontal CIC probability when dealing
with low photon flux, we shall choose the fastest vertical shift speed and highest readout rate. In photon

5



Chapter 2 EMCCD camera

counting mode, if the EM gain is low photons are lost within the readout noise floor, so increasing EM
provides better SNR on the cost of higher CIC level, due to the higher voltage required for higher EM gain.
Our camera spec sheet concerning CIC indicates 0.00257 events per pixel. The output multiplied electron
distribution probability caused by a CIC with generation 𝑝CIC is derived from Eq ?? for 1 electron input,
described by

𝑝
(
𝑥CIC

)
= 𝑝CIC𝑝

(
𝑥CIC | 1

)
=

𝑝CIC exp
(
−𝑥CIC/𝑔

)
𝑔

(2.6)

EM register spurious noise

CIC can occur in the EM register, similarly to the other registers, where we will refer to it for simplicity
from now on as serial CIC. There is literature proof where modelling the charge shifting and multiplication
process, aiming to the calculation of the quantity and origin of the spurious charges, the best fit was found
to correspond to 85% serial CIC and 15% CIC. These numbers are well expected since the chance for a
spurious event is higher within the EM register where the Voltages are higher than any other sensor register.
The serial CIC will suffer less amplification compared to CIC that travels the whole EM register and we
have to account for the fact that can be born in any of the stages. Hence,the output distribution caused by a
serial CIC with probability 𝑝ser requires the summation accounting to each stage separately, expressed as

𝑝
(
𝑥ser

)
=

𝑛∑︁
𝑙=1

𝑝ser exp
(
−𝑥ser/(1 + 𝑝c)

𝑛−𝑙
)

(1 + 𝑝c)
𝑛−𝑙 (2.7)

Electron signal

The probability of getting 𝑛𝑒 photoelectrons from a Poissonian light source (𝑛𝑝) is given by a combination
of mutually exclusive events of joint probabilities of the Poisson distribution(photons) and the binomial
distribution(conversion), which is a Poisson distribution

𝑝(𝑛𝑒;𝜆, 𝑞) =
∞∑︁

𝑛𝑝=0
𝑃(𝑛𝑝;𝜆)𝑃(𝑛𝑒, 𝑞, 𝑛𝑝) = 𝑃(𝑛𝑒;𝜆, 𝑞) = 𝜆𝑞

𝑛𝑝𝑒
−𝜆𝑞

𝑛𝑝!

with mean < 𝑛𝑝 >< 𝑛𝑒 >=< 𝑛𝑝 > 𝑞𝑛𝑝, the product of intensity and quantum efficiency.
The total variance of the image sensor signal is given by the total 𝜎2

= 𝜎
2
𝑒 + 𝜎

2
𝑝.[?]

Reflection, refraction, diffraction, scattering, absorption and electronic conversion, is a binomial
selection process or a sequence of binomial selection processes. Thus, if the photons before the interaction
are Poissonian, then they will be after the interaction as well.[?]

Readout noise

The readout noise is distributed according to a Gaussian curve centred on the value of the counts given by
the baseline. Its width is defined by the readout rate, while it is not affected by the vertical shift speed,
exposure or temperature.

𝑃(𝑥; 𝜇, 𝜎) = 𝑒
−
(𝑥 − 𝜇)2

2𝜎2

𝜎
√

2𝜋
(2.8)

2.2.6 Sensor Non uniformity

All the scientific cameras to some degree exhibit blemishes which impair the faithful reproduction of the
light signal, with primary source the sensor itself. Andor grades the standard cameras with the following
definitions within the active image area which is defined as the central area ignoring the 2.5% of the pixels
around the edge of the sensor, allowing following blemishes:

6



Chapter 2 EMCCD camera

•Black Pixels are regions, typically pixels or small clusters of pixels, having less than 75% response
than their neighbors, due to contamination on the sensor surface or embedded in the sensor. They are
rarely a major issue unless they extend to many pixels (allowed 80 per million pixels-spec sheet 0).
•Hot Pixels have 50 times higher dark current than their neighbors, having different temperature

response than the bulk of the sensor and so can appear to differing amounts at different temperatures. They
are usually due to contamination embedded in the sensor (60 Per million pixels-spec sheet 0).
• Traps only occur in a single pixel and they temporary hold the charge, caused by contaminants getting

into the CCD during the production process or by the effects of radiation on the CCD structure. As charge
is shifted though a trap, it holds a portion of it(same as trap size) but while the trap is filled with subsequent
charge the transfers are unaffected, thus, the charge in the trap slowly dissipates until it is refilled by new
charge created by illumination or by new charge being shifted through the pixel. Traps can be of any size,
minimum of single electron charge but they are only noticeable when it is greater than 200 electrons (4 Per
million pixels allowed-spec sheet 0).

A combination of blemishes may adversely affect a column due to: a combination of more than 30
black or hot pixels, having a dark current greater than 2 times specification-Hot Column (allowed 1 Per
thousand columns), having saturation less than 90% of the average column - Black Column ( allowed 1
Per thousand columns), a trap.[?]

2.2.7 Dark histogram

As I will describe in the next section, when acquiring frames with the shutter closed, we can have a better
understanding of the noise source contributions and the amplification process. In Fig ?? the counts obtain
after different levels of EM gain applied is illustrated. When 4 EM is chosen, the output is governed by
the gaussian distribution without any amplification. The larger the multiplication, the larger the amount
of counts obtained. Hence, for 4 EM we have most of the counts sitting on the center of the read noise
distribution. One can observe that the larger the EM the lower the distribution gets and spreads more
towards higher number of counts, exactly as described for increasing electron input from the Eq ??. In the
extreme case of EM1000, the amplification tail exceeds the Gaussian head in height as expected. In this
manner is technically illustrated how the photons emerge the noise floor.

Figure 2.4: Output distribution plot of different EM application

Figure 2.5: closer look at ??
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Chapter 2 EMCCD camera

When the same output data are plotted in y-log plot axis, the tail amplified from EM is more evident
allowing us to more accurately distinguish between the amount of amplified photons.

In these figures, there is no light impinging on the sensor so we observe CIC amplification. One would
notice the sparce counts laying on the right side of the x axis, very high counts but very few of them,
of the order of tens, most of the time reaching to the saturation limit. This is the effect of Cosmic rays
that due to its high energy when entering the multiplication stage multiply much great that the common
photoelectrons. There is an option for the Andor Camera, the cosmic ray filter, but it literally clamps the
gain to really low values thus it was to use.

Figure 2.6: y-axis log output distribution plot of different EM application

Cosmic rays are so bright that we can still recognize them even after their averaging within 1000 frames.
(Look carefully at )

8



CHAPTER 3

SPDC Theoretical Background

3.1 Introduction to SPDC

In spontaneous parametric downconversion (SPDC) a single input photon at higher frequency, called
pump, after interaction with a nonlinear crystal splits into two of lower frequencies, called signal and
idler. The SPDC process provides an entangled photon pair source with well-defined spectral and spatial
properties, arising from the nonlinear crystal’s optical dispersion.

Figure 3.1: (a)Difference frequency generation process, (b)SPDC process, (c)SPDC energy level diagram.[?]

SPDC is a special type of difference frequency generation process. In the difference frequency
generation, if a field at frequency 𝜔2 is present in the pump stimulates the difference frequency generation
at 𝜔3 = 𝜔1 − 𝜔2, resulting to a very efficient process called optical parametric amplification/oscillation,
illustrated in Fig ??a. If the frequency 𝜔2 is not present in the input, the generation of difference
frequency at 𝜔3 = 𝜔1 − 𝜔2 is still possible accompanied by the generation of frequency 𝜔2, where
in this case the generation of the difference frequency is stimulated by the presence of the vacuum
mode at frequency 𝜔2 in the input field and is therefore very inefficient (1 photon out of 105

𝑡𝑜1012 are
converted). This second-order process of generating the frequencies 𝜔3 and 𝜔2 from the input frequency
of 𝜔1 is referred to as the spontaneous parametric down-conversion Fig ??b. [?] The term spontaneous
refers to the fact that the process is stimulated by the vacuum mode at frequency 𝜔2 in the input field
and the term parametric signifies that the total energy remains conserved during the process. I must
stress here that SPDC is a linear function with the pump power, unlike Second-Harmonic generation or
Difference-Frequency generation, since one pump photon splits into two photons but only one photon
in each mode, so the dependence is clearly linear even though it is a non-linear process [?]. Figure ??c
represents the energy-level diagram of the SPDC process, in which the photon at frequency 𝜔1 gets
absorbed and the absorber goes to a virtual state, finally decaying down to the ground state emitting
photons at frequencies 𝜔2 and 𝜔3 = 𝜔1 − 𝜔2. The energy and momentum conservation entangle the
down-converted photons in energy-time, position-momentum, polarization, and angular position-orbital
angular momentum. The emission directions of the downconverted photons are decided by the constraints
imposed by the conservation of energy and momentum, referred to as the phase-matching conditions. [?]

When the SPDC photons propagate along the pump direction, we have collinear phase matching
(Fig??a). Alternatively, in non-collinear phase matching, they propagate in directions non-collinear with

9



Chapter 3 SPDC Theoretical Background

the pump where we have the so-called detuned phase matching (Fig??b).[?]

[?]

Figure 3.2: Phase-matching diagrams for the (a)collinear and (b)non-collinear emission geometries. [?]

3.2 Non-Linear Crystals

Assuming a non-magnetic medium that is not the vacuum, no external charges and currents, using
Maxwell’s equations we obtain the charge displacement due to an applied external EM field −→

𝐷 = 𝜖𝑜
−→
𝐸 +−→𝑃 .

−→
𝑃 is the induced polarization vector of the medium −→

𝑃 = 𝜖0𝜒
−→
𝐸 , with 𝜖0 the vacuum electric permittivity

and 𝜒 the electric susceptibility of the medium. Depending upon the medium inversion symmetry, it
is characterized as linear when it exhibits inversion symmetry and non-linear when it does not. In
linear media, 𝜒 is a scalar independent of the direction along 𝐸 is applied and −→

𝑃 parallel to −→
𝐸 , whereas

in a non linear medium 𝜒 is described by a tensor and −→
𝑃 is not oriented parallel to the driving field,

because the optical properties of anisotropic media are described by the Lorentz oscillator model,
characterizing the restoring force acting on the electron cloud in different directions by different springs
with a non-linear relation between the displacement and the driving field, leading to a non-linear relation
between −→

𝑃 and −→
𝐸 . Finally −→

𝑃 is expressed according to the power series expansion of the applied
EM field −→

𝑃 = 𝜖0 [𝜒
(1)−→

𝐸 + 𝜒
(2)−→

𝐸
2 + 𝜒

(3)−→
𝐸

3 + ...]. The second order polarization term is described as
𝑃
(2)
𝑖

= 𝜖0Σ 𝑗Σ𝑘𝜒
2
(𝑖, 𝑗 ,𝑘 ) · 𝐸 𝑗𝐸𝑘 , where the second-order nonlinear susceptibility 𝜒

2
(𝑖, 𝑗 ,𝑘 ) characterizes the

medium’s tendency to cause sum-frequency generation, difference-frequency generation, optical refraction
etc, with (𝑖, 𝑗 , 𝑘) = (𝑥, 𝑦, 𝑧). Optically anisotropic crystals, so called birefringent, do not exhibit inversion
symmetry and thus are characterized as non-linear crystals, since their anisotropy allows the manifestation
of non-linear phenomena.

3.3 Birefringence

Birefringent materials’ refractive index depends on the polarization and propagation direction of the light
within them. In uniaxial birefringent media, the so called ’optical’ axis is the direction governing the
optical anisotropy, whereas all directions perpendicular to it or at a given angle are optically equivalent,
i.e. rotating the material around the optical axis does not change its optical behaviour. A light beam
with polarization perpendicular to the optical axis is governed by a refractive index 𝑛0, called ’ordinary’,
while light with parallel polarization sees 𝑛𝑒, called ’extraordinary’. Technically, the refractive index of an
extraordinary ray will always lay between 𝑛0 and 𝑛𝑒, where the magnitude of the difference is quantified
by the birefringence Δ𝑛 = 𝑛𝑒 − 𝑛𝑜, depending upon the beam direction, described by the index ellipsoid.
If Δ𝑛 < 0, the crystal is negative uniaxial. [?]

10



Chapter 3 SPDC Theoretical Background

Figure 3.3: Ordinary and extraordinary polarization ray.[?]

The electric permittivity 𝜖 = (𝜖0)1 + 𝜒 of an anisotropic medium which is a second-order tensor due
to 𝜒

2
(𝑖, 𝑗 ,𝑘 ) , has a unique coordinate system (𝑥, 𝑦, 𝑧) in which it becomes diagonal (𝜖𝑥𝑥 , 𝜖𝑦𝑦 , 𝜖𝑧𝑧) in the

corresponding coordinate axes 𝑒𝑥 ,𝑒𝑦 ,𝑒𝑧 , that are called principal. If 𝐸 is oriented along one of the
principle axes, the electric displacement field 𝐷 points in the same direction. The principal indices of
refraction are given by 𝑛𝑥 =

√
𝜖𝑥𝑥 , 𝑛𝑦 =

√
𝜖𝑦𝑦 and 𝑛𝑧 =

√
𝜖𝑧𝑧 . In a uniaxial crystal, the two principal

refractive indices are equal to the ordinary 𝑛𝑥 = 𝑛𝑦 = 𝑛𝑜, while the third to the extraordinary 𝑛𝑧 = 𝑛𝑒.

Figure 3.4: Propagation direction in spherical coordinates. [?]

For an incoming plane wave propagating inside a uniaxial crystal as illustrated in Fig ?? with electric
field pointing in the k-z plane, after employing Maxwell’s equations and deriving the dispersion relation,
the extraordinary solution is described as 𝑘

2(𝜃) = 𝑘
2
𝑜𝑟 𝑘

2
𝑒𝑥

𝑘
2
𝑜𝑟 sin2

𝜃+𝑘2
𝑒𝑥 cos2

𝜃
where the extraordinary refractive

index is obtained as

𝑛
2(𝜃, 𝜆) =

𝑛
2
𝑜𝑟𝑛

2
𝑒𝑥

𝑛
2
𝑜𝑟 sin2

𝜃 + 𝑛
2
𝑒𝑥 cos2

𝜃
=

1(
sin 𝜃/𝑛𝑒𝑥,𝜆

)2 +
(
cos 𝜃/𝑛𝑜𝑟,𝜆

)2 (3.1)

indicating that the pump extraordinary refractive index depends on the phase-matching angle 𝜃, formed
by the optical axis and the pump propagation direction.

The dispersion relations providing the ordinary and extraordinary refractive indices for each wavelength
are given by the Stellmeier equations, here for a negative BBO crystal,

𝑛
2
𝑜 = 2.27405 + 0.0184

𝜆
2 − 0.0179

− 0.0155𝜆2

𝑛
2
𝑒 = 2.3730 + 0.0128

𝜆
2 − 0.0156

− 0.0044𝜆2

where we see that for any wavelength, the ordinary wave propagates with larger refractive index than the
extraordinary.[?]

3.4 Phase-Matching conditions

The phase-matching condition ®𝑘 𝑝 = ®𝑘𝑖 + ®𝑘𝑠 with
���®𝑘 𝑝

��� = 𝑛𝑝 ,𝜔(𝑝𝜔𝑝 )

𝑐
,

���®𝑘𝑖 ��� = 𝑛(𝑖,𝜔𝑖 )
𝜔𝑖

𝑐
,

���®𝑘𝑠 ��� = 𝑛(𝑠,𝜔𝑠 )
𝜔𝑠

𝑐
,

in the collinear configuration Δ𝑘 = 0 where the angle between the signal/idler wavevectors with the
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Chapter 3 SPDC Theoretical Background

pump axis is 𝜃0 = 0 requires
𝑛(𝑝,𝜔𝑝 )𝜔𝑝

𝑐
=

𝑛(𝑠,𝜔𝑠 )
𝜔𝑠

𝑐
+

𝑛(𝑖,𝜔𝑖 )
𝜔𝑖

𝑐
, where in combination with the energy

conservation equation 𝜔𝑝 = 𝜔𝑠 +𝜔𝑖 of the degenerate case, we obtain for the Type I downconversion case
that negative uniaxial crystals allow 𝑒 → 𝑜 + 𝑜,

𝑛𝑝,𝑒 (𝜔𝑝) − 𝑛𝑠,𝑜 (𝜔𝑠) =
𝜔𝑖,𝑜

𝜔𝑝

[
𝑛𝑖,𝑜 (𝜔𝑖) − 𝑛𝑠,𝑜 (𝜔𝑠)

]
corresponding to 𝑛𝑒𝑥 (𝜔𝑠,𝑖) = 𝑛𝑜𝑟 (2𝜔𝑝).
Finally the noncollinear phase matching geometry for propagation in the x-z plane (𝜙 = 0) with 𝜃0 ≠ 0, is
given by ���®𝑘 𝑝

��� = ���®𝑘𝑠 ��� cos 𝜃0 +
���®𝑘𝑖 ��� cos 𝜃0 =⇒ 𝑛(𝜃)𝑝𝜔𝑝 = cos 𝜃0𝑛𝑠

1
2
𝜔𝑝 + cos 𝜃0𝑛𝑖

1
2
𝜔𝑝

resulting to the non-collinear geometry detuned phase-matching condition Δ𝑘 = 𝑘 𝑝 (cos 𝜃0 − 1) ∼
𝜃

2
0𝑘 𝑝/2, that depends upon the crystal length 𝐿 as well, because the larger the latter the bigger the phase

mismatch can be.[?],[?] The downconversion efficiency is the highest in the collinear geometry with
condition Δ𝑘𝐿 < 𝜋

2 which in its turn defines the maximum opening angle of the emitted photons from the
pump propagation axis as 𝜃0,𝑚𝑎𝑥 ∼

√︃
𝜋

𝐿𝑘𝑝
, hence, the shorter the crystal the larger the divergence. I shall

mention here that in the collinear geometry the phase matching condition is not truly 0 because there is
practically always a slight detuning.

Figure 3.5: Notations 𝜙𝑠,𝜙𝑠,𝑜𝑢𝑡 ,𝜙𝑖 , 𝜙𝑖,𝑜𝑢𝑡 represent emission angles for signal and idler beams both inside and
outside the crystal. 𝜌𝑝 is walk-off angle of pump beam inside the crystal and 𝜃 is the angle between the pump
wavevector and optic axis. [?]

In both geometries, the pump will experience a spatial walk-off while it propagates as an extraordinary
ray inside the crystal, translated as expecting the pump exiting the crystal face with a tilt from its original
propagation axis. Assuming the coordinate system illustrated in Fig??, the spatial walk-off is in the +x

direction, given by 𝜌𝑝 =
−1

𝑛𝑒 (𝜔𝑝,Θ)
𝜕𝑛𝑒 (𝜔𝑝,Θ)

𝜕Θ
|Θ=𝜃 . [?].

3.5 Spatial entanglement properties of the SPDC momentum plane

In the degenerate wavelength downconversion case described above, due to the strong frequency anti-
correlation expressed through

∫
𝑑𝜔𝑠

∫
𝑑𝜔𝑖𝛿(𝜔𝑝 − 𝜔𝑠 − 𝜔𝑖) in the two photon amplitude expression,

the latter becomes frequency independent when interference filter is used after the BBO to restrict
𝜔𝑖 = 𝜔𝑠 =

𝜔𝑝

2
. [?]

Therefore, the quantum state describing the SPDC which is the vacuum state and the downconverted
photons pair state

|Ψ⟩ ≈ | vac⟩ + 𝜇

∬
d𝒌⊥𝑠 d𝒌⊥𝑖 𝑓

(
𝒌⊥𝑠 ; 𝒌⊥𝑖

) ��𝒌⊥𝑠 ; 𝒌⊥𝑖
〉
, (3.2)

is reduced to the expression of downconverted photon spatial degree of freedom, decoupled from
the spectral degree of freedom. 𝒌⊥𝒔 and 𝒌⊥𝒊 are the transverse wave vectors, where the approximation
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Chapter 3 SPDC Theoretical Background��𝒌⊥/𝑘 �� ≪ 1 holds for all the modes because the signal and idler modes are usually at small angles to the
longitudinal axis.[?] Assuming that the transverse section of the nonlinear crystal is much bigger than the
pump beam diameter and the crystal’s length 𝐿 along the pump is small compared to the depth of the
focus of the pump: the bi-photon amplitude is given by

𝑓
(
𝒌⊥𝑠 ; 𝒌⊥𝑖

)
= 𝛼

(
𝒌⊥𝑠 + 𝒌⊥𝑖

)
𝜙𝐿

(
𝒌⊥𝑠 − 𝒌⊥𝑖

)
(3.3)

𝛼
(
𝒌⊥𝑠 + 𝒌⊥𝑖

)
= exp

(
−
𝑤

2
0

4
��𝒌⊥𝑠 + 𝒌⊥𝑖

��2) (3.4)

is the angular spectrum of the pump transferred to the biphoton state for a Gaussian pump beam profile
with waist 𝑤0.

𝜙𝐿

(
𝒌⊥𝒔 − 𝒌⊥𝒊

)
= sinc

[
𝐿

2

(
Δ𝑘 −

��𝒌⊥𝑠 − 𝒌⊥𝑖
��2

4𝑘𝑖,𝑠

)]
(3.5)

is the longitudinal phase-matching function given for the Type-I downconversion (same polarization
biphotons) withΔ𝑘 = 2𝑘𝑖,𝑠−𝑘 𝑝 for collinear phase matching andΔ𝑘 ∼ 𝜃

2
0𝑘 𝑝/2 for non-collinear geometry.

The joint probability distribution in momentum is 𝑃𝑚

(
𝒌⊥𝒔 ; 𝒌⊥𝒊

)
∝

�� 𝑓 (
𝒌⊥𝒔 ; 𝒌⊥𝒊

) ��2.

The marginal probability distribution of each mode transverse 𝑘-vector is defined by 𝑃𝑚

(
𝒌⊥𝑢

)
=∫

𝒌⊥𝑣 𝑃𝑚

(
𝒌⊥𝑢 ; 𝒌⊥𝑣

)
.

The conditional distribution is 𝑃𝑚

(
𝑘
⊥
𝑣 | 𝑘⊥𝑢

)
= 𝑃𝑚

(
𝑘
⊥
𝑢 ; 𝑘⊥𝑣

)
/𝑃𝑚

(
𝑘
⊥
𝑢

)
. 𝑢, 𝑣 represent 𝑠, 𝑖 respectively

or vice versa.
In the thin crystal regime and using a Gaussian approximation of the sinc function, the marginal and

conditional distribution may be approximated as [?]

𝑃𝑚

(
𝒌⊥𝑢

)
∝ exp

[
−2𝛾𝐿2

Δ𝑘

𝑘𝑖,𝑠

(
𝑘
⊥
𝑢 −

√︃
𝑘𝑖,𝑠Δ𝑘

)2
]

(3.6)

with 𝛾 = 0.193

𝑃𝑚

(
𝒌⊥𝑣 | 𝒌⊥𝑢

)
∝ exp

(
−
𝑤

2
0

2
��𝒌⊥𝑢 + 𝒌⊥𝑣

��2) (3.7)

The marginal distribution expression ?? indicates that the emerging biphotons are distributed around
cones centred on the pump propagation axis (not the walk-off direction), where their circular section has the
same radius for signal and idler photons in the degeneracy. This ring represents the transverse momentum
distribution of the degenerate downconverted photons. Inside this region the transverse momentum of the
signal and idler are anticorrelated. If this anti-correlation were perfect, the photons would be found in
diametrically opposite points inside the ring as illustrated in figure 5. However due to the uncertainty in
the transverse momentum conservation, introduced by the finite pump beam spatial distribution, each
generated photon is only localized to within the correlation area defined by the width of 𝑃PDC

(
𝒌⊥𝑣 | 𝒌⊥𝑢

)
To map the transverse momentum 𝒌⊥𝑣 into the transverse position 𝒓 =

𝑓

𝑘
𝒌⊥ in the plane of the used

detector, we must perform a spatial Fourier with a 2 𝑓 imaging system where the Fourier lens is placed in
equal distances 𝑓 from the detector and the crystal. Now the joint distribution of observing a photon at
position 𝒓𝑠 with its partner at 𝒓𝑖 is

𝑃
(
𝒓𝑠, 𝒓𝑖

)
∝ 𝑃m

(
𝑘𝑖,𝑠

𝑓
𝒓𝑠,

𝑘𝑖,𝑠

𝑓
𝒓𝑖

)
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the respective marginal distribution is

𝑃
(
𝒓𝑠

)
∝ exp

−
2𝛾𝐿2

𝑘𝑖,𝑠Δ𝑘

𝑓
2

(
𝑟𝑠 − 𝑓

√︄
Δ𝑘

𝑘𝑖,𝑠

)2 (3.8)

same for the idler.
The latter equation yields a ring with a diameter

𝑓

√︃
Δ𝑘/𝑘𝑖,𝑠

and width
𝑓 /(2𝐿

√︃
𝛾𝑘𝑖,𝑠Δ𝑘)

Finally, the conditional distribution is [?]

𝑃
(
𝒓𝑠 | 𝒓𝑖

)
∝ exp

(
−
𝑤

2
0𝑘

2
𝑖,𝑠

2 𝑓 2

��𝒓𝑠 + 𝒓𝑖
��2) (3.9)

the diameter (the full width at 1/𝑒2 maximum) of the conditional distribution is

Δ𝐶 ≈ 4 𝑓
𝑘𝑖,𝑠𝑤0

(3.10)

A cartoon setup illustrating all the above is given bellow

Figure 3.6: [?]

A fully detailed description can be found here [?], including the integration of Fresnel equation proving
that we need a 2 𝑓 configuration to access the momentum plane of the crystal.

3.6 Statistics of SPDC beams

Considering the pump beam as a continuous classic wave that exhibits no fluctuations divided into
𝑁 = 𝑇/𝜏𝑟 continuous segments with duration the transit time 𝜏𝑟 through the crystal, because each
segment can be described by the Yurke-Potasek cavity formulation with 𝑡 = 𝜏𝑟 , will give rise to a
Bose-Einstein distributed number of photons in each of the downconverted beams, that is left intact by
the losses and the finite detector’s quantum efficiency. The total photon number 𝑛 generated in each
beam during the counting time T is a sum of 𝑁 independent Bose-Einstein random variables, resulting
to a negative binomial distribution with mean 𝑛 = 𝜆𝑇 , that is the sum of the individual means with
variance 𝑉𝑎𝑟 (𝑛) = 𝑛 + 𝑛

2

𝑁
= 𝑛(1 + 𝜆𝜏𝑟 ). The quantity 𝜆𝜏𝑟 represents the mean number of photons

emitted in a single transit time where 𝜏𝑟 = 𝑙/𝑐 is usually in the order of ps, hence 𝜆𝜏𝑟 ≪ 1 reducing the
variance to 𝑉𝑎𝑟 (𝑛) ∼ 𝑛, indicative of Poisson statistics. The above description implies that the mean
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photon number emitted within a transit time is sufficiently small such that the probability of generating
more than one photon is negligible, thus the overall sequence of photon emissions is consistent with a
Poisson point process. If the pump exhibits phase fluctuations with coherence time 𝜏𝑐, but is effectively si-
nusoidal during any transit time (𝜏𝑟 ≪ 𝜏𝑐), the Poissonian statistics still holds but with lower mean value.[?]

From the integration of Eq ?? according to [?], the probability of detecting 𝑁𝑖 photons in the area 𝑆𝑖 if
the anti-correlated photons are detected within area 𝑆𝑠 with 𝑁𝑠, is expressed as

𝐹 (𝑆𝑖) =
< 𝑁𝑠𝑁𝑖 > − < 𝑁𝑠 >< 𝑁𝑖 >

< 𝑁𝑠 >

where for 𝑆𝑠 = 𝑆𝑖 we obtain

𝐹 (𝑆𝑖) = 𝐹 (𝑆𝑠) =
< 𝑁𝑠𝑁𝑖 > − < 𝑁𝑠 >< 𝑁𝑖 >

(< 𝑁𝑠 > + < 𝑁𝑖 >)/2
Since the statistics is Poissonian, the pairs are independent and their mean number equals their variance

as

< 𝑁𝑖 >=< 𝑁𝑠 >=< 𝑁
2
𝑠 > − < 𝑁𝑠 >

2

yielding

𝐹 (𝑆𝑖) = 1 −
< (𝑁𝑠 − 𝑁𝑖)

2
>

< 𝑁𝑠 + 𝑁𝑖 >

the expression of the correlation peak between the two areas. For Poissonian pair statistics the correlation
peak would be a positive value, hence indicate sub-shot noise correlations for the right hand side term. As
described, even if the statistics of each photon separately is thermal, its variance reduces to the mean value
because of maximum 1 photon per emission time segment.
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CHAPTER 4

Sub-shot noise spatial anti-correlation
measurement of BBO momentum plane with
EMCCD

4.1 EMCCD as detector

For the measurement of the photons spectral degree of freedom, are required non-stationary optical
elements and detectors with response time in the fs/ps range, where such devices are difficult to build. On
the other hand, the photons spatial properties are easier to manipulate since elements with high spatial and
angular resolutions already exist. There are numerous experiments where the spatial degree of freedom of
single photons or entangled photon pairs has been measured, employing one detector for scanning the
position where the photon is most probably to be found. In such a detection scheme the outcome of each
measurement is binary, either having a photon hitting or not the detector, effectively reducing the usable
dimensions of information. To access the full potential of the continuous spatial variable, a large array of
detectors with single-photon sensitivity, sufficiently high quantum efficiency and spatial resolution with
low noise shall be used.[?]

An EMCCD is a great device candidate, satisfying all those requirements. The measurement of the
intensity of a light field depends on the ability to precisely count photons, a task quite cumbersome
due to two reasons: firstly the shot noise, originating from the quantized nature of the electromagnetic
field and secondly, the presence of losses in the detection process, no matter the detector used. Even
for a perfect detector that would produce signal for each photon absorbed, the sensitivity of the light
intensity measurement will be subject to the fundamental shot-noise limit. Even with the use of an
EMCCD, we cannot accurately determine the exact photon number absorbed by its sensor due to the Excess
Noise Factor. To circumvent the ENF, post processing methods such as Photon Counting, Thresholding,
Multiple Thresholding, Bayesian Interference and Thresholding with Bayesian Interference are proposed,
to accurately deduce the real input photon flux on a pixel from the digital readout. Operating the camera in
photon counting settings with low photon flux ≪ 1 with EM gain such that all the single photons emerge
the noise floor, and imposing a threshold where above it we have a photoelectron event and below it noise:

if 𝜇 is the true mean number of photoelectrons accumulated in a pixel, the thresholding procedure
would give in the abscence of false detections, a measured mean

𝑚 = 1 − 𝑝(0) = 1 − 𝑒
−𝜇 (4.1)

with 𝑝(0) the probability of detecting no photoelectrons. The left hand side indicates that after
thresholding there is no ability of telling between one or more photon impinging on the sensor, while the
right hand side indicates the Poissonian distribution of the thresholded ’binary’ electrons.

The variance of Eq ?? is
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𝜎
2
𝑚 = 𝑚

2
𝑝(0) + (1 − 𝑚)2 [1 − 𝑝(0)] = 𝑚(1 − 𝑚) (4.2)

smaller than the mean value 𝑚, as a result of the binary detection. Also, the variance of the difference
is affected identically, hence taking their ratio, would yield an estimation of the quantum correlation of
indipendent pairs with a standard quantum limit at 2. If the signal and idler positions are not in strict
correspondance, the variance of the difference increases. [?]

The ideally perfect correlation in the bi-photon photon number is reduced also from the optical path
elements towards the EMCCD and the sensor binomial absorption, so the overall effective quantum
efficiency is lower than that of the sensor. Further, concerning to the uncertainty that determines the actual
size of the coherence area in the far field, in order to collect all the correlated photons, the detection area
Adet in an ideal situation must be larger than the coherence area Acoh .

The total effective quantum efficiency 𝜂 in terms of the detected correlated
〈
𝑁𝑐

〉
and uncorrelated

events
〈
𝑁𝑢

〉
is defined as

𝜂 =

〈
𝑁𝑐

〉〈
𝑁𝑐

〉
+

〈
𝑁𝑢

〉 .
The average number of all detected events ⟨𝑁⟩ is equal to the sum of correlated

〈
𝑁𝑐

〉
and uncorrelated〈

𝑁𝑢

〉
due to losses bright events, plus the detector’s dark events

〈
𝑁𝐷

〉
. By substituting

〈
𝑁𝑐

〉
with the

number of detected biphotons 2
〈
𝑁𝑝

〉
, we obtain

⟨𝑁⟩ =
〈
𝑁𝑐

〉
+

〈
𝑁𝑢

〉
+

〈
𝑁𝑑

〉
=

2
〈
𝑁𝑝

〉
𝜂

+
〈
𝑁𝑑

〉
4.2 Noise Reduction Function

A number of studies based on the photon number spatial fluctuations of down converted pairs have been
investigated using BBO type I and II crystals, exploiting the intensity correlations to experimentally
demonstrate sub-shot noise statistics.([?], [?]) Photon number counting is a phase-insensitive intensity
measurement. Non-classical Gaussian states, such as the squeezed vacuum state generated by SPDC, is
entangled in the photon number, meaning that two ideal detectors intercepting each modes respectively
always measure the same number of photons. This correlation is strongly nonclassical and does not involve
any measurement of the phase.[?]

The spatial correlations between the signal and idler photons have two origins: the quantum, because
photons are emitted by pairs, and the classical, because of the non spatially stationary nature of the
intensity, where the mean intensity in the far field follows the phase-matching profile. [?] The quantized
nature of the electromagnetic field sets the classical limit to the sensitivity of the spatial measurements of
correlated photons.

Generally, the quantity of variance indicates the magnitude of spread of the measured data around its
mean value. For a coherent state, the anticipated error in estimating the photon number difference is given
according to Poissonian statistics as〈

Δ
2 (𝐴 − 𝐵)

〉
= ⟨𝐴 + 𝐵⟩, defining the so-called Shot Noise Limit (SNL).

The variance of the photon pair number difference in the far field normalized to the shot noise is
expressed as

𝑟 =

〈
Δ

2 (
𝑁1 − 𝑁2

)〉〈
𝑁1 + 𝑁2

〉 = 1 − 𝜂 (4.3)

with 𝜂 the overall quantum efficiency of the detection described above. 𝑟 is usually refereed as ’degree of
correlation’ or most commonly ’Noise Reduction Factor’. Sub-shot-noise sensitivity in the measurement
is achieved if 𝑟 < 1.
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Chapter 4 Sub-shot noise spatial anti-correlation measurement of BBO momentum plane with EMCCD

Multiple papers state sub-shot noise correlation measurements withing the last decade, in a recent one,
the authors of [?] explicitly state measurement of sub-shot-noise statistics in far-field measurements of
Type II BBO, using the normalized variance expression on binned pixels after background subtraction
and thresholding, with value 𝑟 = 0.88 ± 0.09, while they verified that images issued from different laser
shots do not exhibit such a sub-shot noise behaviour, since for these images, 𝑟 = 1.02 ± 0.12 both in the
near-field and the far-field.

Another approach to observe the sub-shot noise statistics, as described in the previous Section(3.1), is
calculating the ratio of the mean ’binary’ photon variance (Eq. ??) to the variance of the number difference
of spatially opposite pairs. The authors of [?], using an EMCCD and a Type I BBO, employed such an
analysis dividing the recorded images of the spatial representation of the momentum plane in the camera,
in opposite angular sectors. They satisfied every necessary condition for clear correlation resolution, using
a wide beam radius, thresholding with appropriate exposure time and using filters to narrow the emitted
wavelengths around degeneracy. Even a perfectly phase matched crystal would still produce biphotons
within a narrow wavelength band, where each wavelength pair would suffer different refractive index
until exiting the crystal, thus would exit towards different directions shifted away from the original pump
direction propagation. All the different wavelength pairs have the same diameter, including the coherence
area uncertainty, an elegant way of surpassing these widening parameters is choosing wider areas to
calculate their difference, hence the sectors. They chose a number of 𝑆 = 180 sectors, i.e. 90 opposite
pair areas, where each sector correspond to a detection area of 2 pixel width, double their coherence area,
which is proved to give good resolution. The sector length is defined from the inner radius up to almost 50
pixels width.

The photon number difference between two opposite sectors is defined as

𝜎
2
diff =

1
𝑆/2 − 1

𝑆/2∑︁
𝑖=1

(
𝑛𝑖 − 𝑛𝑖+𝑆/2

)2
(4.4)

and dividing this quantity either by the mean number of photons in a sector

𝑛moy =
1
𝑆

𝑆∑︁
𝑖=1

𝑛𝑖 (4.5)

or by the
variance of the photon number in a sector

𝜎
2
𝑠 =

1
𝑠 − 1

𝑆∑︁
𝑖=1

(
𝑛𝑖 − 𝑛moy

)2
(4.6)

The correlation measure can be expressed as

𝑟 =
𝜎

2
diff

𝑛moy
(4.7)

either

𝑟
′
=
𝜎

2
diff

𝜎
2
𝑠

(4.8)

where a mean value plus 2 STDs well bellow 2, will yield subshot noise correlations. Since the variance
of the photon number will always be smaller than the mean photon (Eq ??), 𝑟 ′ will give larger values
compared to 𝑟, but the reason that it is considered more accurate than 𝑟 is because both variances are
affected by the binary detection in the same way, thus their ratio will provide a more accurate estimation
of the quantum correlation measure.
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In this figure of merit the minimum value expected is defined from the overall quantum efficieny as in ,
doubled, because each sector is considered as either an idler or a signal photon, not as the average of Eq.
??.
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CHAPTER 5

Modelling the EMCCD noise

To obtain the CIC, serial CIC and Readout contribution that lead to a non zero output in the absence of
illumination on the sensor, from experimental data of dark frames with closed shutter, I implemented two
different functions, in order to calculate the threshold for photon counting mode accurately.

The three different noise sources contribute to the probability distribution as illustrated bellow, where
blue indicates the readout Gaussian distribution, green the serial CIC output and blue the CIC output,
on the data used for the modelling. The bias offset was deduced from the data to obtain the real counts,
meaning that the Readout curve was centred at 0.

Figure 5.1: Representation of the noise sources contribution on dark frames

In the first case a convolution of the three noise probabilities described in Section(1.2.2) was employed
exactly according to [?] using an existing Matlab script (author Ivan Migorodesky)

Figure 5.2: Convolution of the three noise probabilities according to [?], 0.0001s, 17MHz, 0.5vss, -85C.

I have to stress here that this script assumes 𝑝𝑐 = 0.01 and m=596 stages in order to obtain g=1000.
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Chapter 5 Modelling the EMCCD noise

The camera has instead 536 stages and 𝑝𝑐 = 0.01297 is required to assimilate EM 1000.
Secondly, as described in [?] using an analytic approximation, where they approximate CIC and serial

CIC as Poissonian events (??) thus assuming possibility of maximum only 1 possible CIC per pixel 𝑃𝑝 and
serial CIC arising only in one of the EM stages with very low probability 𝑃𝑠, derive the total distribution
probability, where we either have one of the CIC events or none as outcome, described by

𝑃(𝑛) =
∫ 𝑛

0

[ (
1 − 𝑝CIC − 𝑚𝑝ser

)
𝛿(𝑥) +

(
𝑝CIC
𝛾

𝑒
−𝑥/𝛾 +

𝑚∑︁
𝑘=1

𝑝ser
𝛾𝑚−𝑘

𝑒
−𝑥/𝛾𝑚−𝑘

)
𝐻 (𝑥)

]
− N(𝑛 − 𝑥, 𝜎)𝑑𝑥

(5.1)
with 𝑚 the number of stages, 𝑁 (𝑛, 𝜎) the Gaussian distribution of the readout noise, 𝐻 (𝑛) the Heaviside

function and 𝑛 the output electron number.
Because this expression is a mixture distribution of a zero output in the case of no spurious electron and

an exponentially distributed output in the case of a spurious electron, convolved with the read noise, since
the EM gain is assumed high for photon counting mode measurement, the convolution of the Gaussian
with the exponential distribution is ignored since the exponential width of the read noise is much smaller
than that of the CIC, finally reducing to

𝑃(𝑛) ≈
(
1 − 𝑝CIC − 𝑚𝑝ser

)
N(𝑛, 𝜎) +

(
𝑝CIC
𝛾

𝑒
−𝑛/𝛾 +

𝑚∑︁
𝑘=1

𝑝ser
𝛾𝑚−𝑘

𝑒
−𝑛/𝛾𝑚−𝑘

)
𝐻 (𝑛) (5.2)

The Heaviside function is required because no negative values are allowed to enter the exponential
distribution, since they are defined for electron input number larger than 1. Implementing the above
function on the dark frames with closed shutter for 0.0001s exposure in kinetics mode with 17MHz readout
rate and 0.5𝜇𝑠 vss at 1000 EM gain, I obtain the total noise probability distribution

Figure 5.3: Additive contribution of the three noise probabilities according to [?], 0.0001s, 17MHz, 0.5vss, -85C.

The above fit verifies that we can approximate the three noise source as additive, without the need of
a total convolution. The readout noise is added after the EM multiplication and the two spurious event
happen independently.

Now comparing the two methods results, we obtain similar values but not identical. In the first
method the gaussian variance is larger at 𝜎𝑐 = 19.1 counts while in the second at 𝜎𝑎 = 18.7, where
fitting only a normalized gaussian contribution to the histogram gives the latter result, thus i can say
is slightly more accurate. Concerning the CIC probability in the first case is 𝑝𝐶𝐼𝐶,𝑐 = 0.0034 while
the second 𝑝𝐶𝐼𝐶,𝑎 = 0.0020. Andor states that in the lowest exposure in 0.3vss after thresholding
the number of spurious events is at 0.00257, thus i would say that the second method underestimates
the CIC probability. Finally, 𝑝𝑠𝑒𝑟 ,𝑐 = 2.0 · 10−5

𝑝𝑠𝑒𝑟 ,𝑎 = 3.8 · 10−5, where the second is closer to
the data, because if one looks carefully at the convolution tail the serial contribution curve is not
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properly tailored as in the analytic formula plot. Concluding on 𝑝𝑐𝑖𝑐, I cannot be adamant about the
accuracy on the height of the multiplication tail derived from the convolution formula for more stages
and lower duplication probability, but it is indeed closer to the spec sheet value. I have to stress here
that concerning the second method one has to perform a very careful tuning of the 𝑝𝑠𝑒𝑟 while imposing
the fit, because if defined higher than its true value the green spike emerges above the Gaussian curve center.

To obtain the optimum threshold value for analysis in photon counting mode where above a defined
threshold we assume that the event signifies one photoelectron and below it the noise, to avoid the excess
noise uncertainty , according to the paper [?] used for the first method described above, a multi-imaging
strategy is proposed by taking into account the possibility of multiple photodetection events on 1 pixel,
based on Bayesian estimation on each image, with a priori information given by the sum of the images.
Because the relative contribution of the noise increases on decreasing photon flux per frame in photon
counting mode, since the CIC noise is dominating, an optimum level of illumination is necessary for
which the total error due to both multiple-photon and noise-induced fake detections is minimal. Both the
optimum illumination level and the threshold are obtained from the minimizing of error caused by all
the fake detections, for each independent pixel, due to the inhomogeneous sensor response that yields
different results for the same illumination. The thresholding procedure is as follows:

The mean light level per pixel on each frame is assumed << 1 and there is an input photon 𝑦 = 1 if the
output 𝑥 in grey levels/ unbiased counts is greater than the defined threshold 𝑥 > 𝑇 . Alternatively if 𝑥 < 𝑇 ,
there is no input photon and the result of the procedure gives 𝑦 = 0.

The false detections events leading to errors are the following:
1) 𝑥 > 𝑇 for 𝑛 = 0, due to noise one photon is detected instead of 0, with probability 𝑝(𝑦 = 1 | 0) ≡ 𝑝10.

2) 𝑥 < 𝑇 for 𝑛 = 1, due to random gain 0 photons are detected instead of 1, with probability
𝑝(𝑦 = 0 | 1) ≡ 𝑝01.

3) 𝑥 > 𝑇 for 𝑛 = 2, where 1 photon is detected instead of 2 with probability 𝑝(𝑦 = 1 | 2) ≡ 𝑝12. The
case 𝑥 < 𝑇 for 𝑛 = 2 is considered negligible.

The approximate light level 𝜇 = ⟨𝑛 > /𝑁 needed on each frame for a mean photon number ⟨𝑛⟩ on the
sum, can be obtained according to the number of frames 𝑁 recorded.

The repartition functions of the conditional probabilities of errors are described as:

𝑝01 =

𝑇∑︁
𝑥=0

𝑝(𝑥 | 1) (5.3)

𝑝10 =

∞∑︁
𝑥>𝑇

𝑝(𝑥 | 0) (5.4)

𝑝12 =

∞∑︁
𝑥>𝑇

𝑝(𝑥 | 2) (5.5)

with 𝑝(𝑥 | 1) and 𝑝(𝑥 | 2) defined from ??, while 𝑝(𝑥 | 0) is the experimental probability distribution
derived from the closed shutter histogram fits above.

Considering 𝑇/𝑔 << 1, Eq ?? reduces to 𝑝01 = 1 − 𝑒
−𝑇/𝑔 � 𝑇/𝑔, while ?? can be approximated as

𝑝12 � 1.

𝑄 = 𝑁

[
𝑝01𝜇 + 𝑝10(1 − 𝜇) + 𝑝12

𝜇
2

2

]
=< 𝑛 > 𝑝01 + (𝑁− < 𝑛 >)𝑝10 +

< 𝑛 >

2𝑁
𝑝12 (5.6)

The minimization of the quadratic error 𝑄 with respect to variables 𝑁 and 𝑇 , for one pixel on the sum
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of the images, assuming equal weighting of the false events, with 𝑁− < 𝑛 >≈ 𝑁 , leads to

𝜇 =
< 𝑛 >

𝑁
=

√︁
2𝑝10 (5.7)

and T such as that

𝑝10 =
𝑔

2

2

(
𝜕𝑝10
𝜕𝑇

)2
(5.8)

The value of 𝜇 can be obtained for given 𝑇 through the sum evaluation of Eq ?? using the dark frames
histogram. To calculate 𝑇 , the above derivative is evaluated by calculating 𝑝10 for each value of 𝑇 so to
calculate progressively the finite differences

(
𝑝10(𝑇 + 1) − 𝑝10 (𝑇 − 1))/2.

Finally for both the convolution fit and the analytic fit, the plotted derivative yielded a minimum at 60 counts.
Even though the fitted probabilities were not identical. What practically defines the threshold is the Gaussian
variance, where usually most of the thresholding schemes assume 2.8𝜎 < 𝑇 < 3.2𝜎 without performing
all the above procedure. In the analytic case 𝑇 = 60 = 3.21𝜎𝑎 and for the convolution 𝑇 = 60 = 3.15𝜎𝑐. I
have to mention here, that concerning the SPDC momentum correlations, overestimating the threshold by
1 or 2 counts gave no difference.

The authors of [?], referring to this thresholding procedure described above, present a clear graphical
method for the threshold and optimal light level estimations, employing the simultaneous graphical
visualization of the three probabilities involved in the detection errors on 1 pixel, hence deriving in a
straightforward, the threshold level and thus the best mean level of illumination to be used in order to
minimize the false detection probabilities that might ruin the real image statistics.

Considering as before: 𝜇 ≪ 1 and Poissonian light distribution, the above mentioned probabilities in
the single photon counting regime are 𝑝(𝑥 | 0) (1 − 𝜇), 𝑝(𝑥 | 1)𝜇 and 𝑝(𝑥 | 2)𝜇2/2, corresponding to the
probability of recording only noise in the absence of light, output for 1 input photon when there is light
and then for two photons while illumination, respectively. Here, as in the analytic method, we have to
divide the pixel frequency occurence by the number of total pixels along the frames, to normalize the y
axis according to probability described by Eq ??.

The probabilities 𝑝(𝑥 | 0) (1 − 𝜇) and 𝑝(𝑥 | 1)𝜇 associated respectively with the detection of 𝑥 grey
levels for 0 and 1 input photons, have an intersection point at 𝑥𝑖𝑛𝑛1, increasing for decreasing input mean
photon number, with limiting point incide the CIC region for 𝜇 → 0.

Along with each threshold calculation we can derive the false detection probabilities for an overestimated
or undervaluated level of light compared to the one used for the threshold calculation.
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We can easily observe that for increasing assumed light level, higher than the one used for the threshold
calculation, the necessary threshold lowers in counts. The 𝑝(𝑥 | 2)𝜇2/2 curve generally remains below the
𝑝(𝑥 | 1)𝜇 curve, but crosses the probability 𝑝(𝑥 | 0) (1 − 𝜇) for a value of grey levels 𝑥 = 𝑥int 2 > 𝑥int 1.
𝜇 is treated as a parameter here to obtain the threshold according to it and not only due to the dark noise

histogram.
I need to mention here, that the histograms raw data used bellow are after cropping to the same size as

the SPDC images, where since I am not using the whole sensor area there is no need to include uniform
edge non uniformity which is inevitable because it is attached to a Peltier cooling, hence we observe the
heat transfer gradient in a manner.

The same analysis was repeated for 𝜇0.010s exposure time and 0.015 s, where for 0.010 s I obtained
the same threshold as in the two previous methods. The obtained thresholds were used for the different
exposures times I had in my measurement data concerning the correlation scheme.

The analysis of more thresholding techniques can be found in detail here [?].
Finally, if one wants to calculate the mean sensor response function can employ [?]

𝐼𝑛 = 𝑃𝑟𝑒𝐴𝑚𝑝

(
𝑔𝑛 + 𝜇 + 𝑝𝑐𝑖𝑐𝑔 + 𝑝𝑠𝑒𝑟

𝑔 − 1
𝑝𝑐

)
(5.9)
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CHAPTER 6

Analysing the experimental Data

The primary experimental goal was to reproduce the approach proposed in the paper [?], where they
demonstrate the capability of an EMCCD camera to record multiple SPDC coincidence events with mean
photon number per pixel much higher than 1, contrary to the usual approach performed in photon counting
regime, hence providing a mechanisms for recording quantum signatures for bright correlated photon
sources. My results are exactly opposite from their suggestion, thus we had to implement another approach
to investigate if the setup itself was responsible for the great discrepancy of the results. Having already
assessed the camera operation in the photon counting regime, the method implementation of [?] was
possible, where the identical setup and existing measurements at the low exposure times required were
used, to analyse the data accordingly.

6.1 Experimental Setup

Figure 6.1: experimental setup

For the proper photon detection, our system was optimized by
minimizing the background light with a custom made light-tight
pvc box enclosing the EMCCD, the f=25.4mm Fourier lens and
the SPDC source. The SPDC photon source used is the box was
contained in the ”qutools’ Entanglement Demonstrator”. The box
contains a laser source emitting a 405 nm vertically polarized beam,
aligned through a mirror to impinge on a half waveplate, and a
polariser for choosing |𝑉⟩ or |𝐻⟩ laser polarization. The laser beam
is focused on two glued BBO crystals with their optic axes crossed,
each 0.6mm thick. Tje lens is tighty fitted on a post between the

box filter and the premium 800 nm mounted in the camera entrance.

Figure 6.2: quTool box

All the measurements were performed with Horizontal
polarization where the respective crystal is more efficient
to. Finally the box is cover by a carton with a thick
premium filter attached on it with wavelength band at
±3nm, center at 812 nm. A 400nm premium filter is
placed directly after the laser exit because I found out that
it emits light at higher wavelengths, using the EMCCd
camera. I would not have known, unless that was not the
case with the laser used prior, it was leaking light close
to 800nm and we found out after trying with multiple
filters combination to avoid the case of fluoresce.

It is proven in literature that the coupling efficiency
of the SPDC photons to a fiber is optimized by proper
adjustment of the pump focus on the crystal. Hence,
since the provided setup is devised for SPDC light collection from two fibers, the pump is focused through
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a focusing lens placed at a focal length ahead of the crystal surface, as illustrated below in Fig??. The
BBO lies within the Rayleigh range and thus the beam width is assumed constant 𝑤𝑜. It is also proven
thought, that beam focusing alters the spatial profile of the SPDC light due to the spatial walk-off of the
beam which introduces an asymmetry [?].

Figure 6.3: no threshold

For the systematic description of the SPDC produced with a focused pump, the biphoton quantum state
must be calculated without using the transverse momentum conservation condition, because it comes
from the assumption that the interaction area of the crystal is very wide, typically many orders wider
than the scale of the wavelength, and that the pump intensity is nearly constant over this transverse area.
Considering now focused pumping, the effective interaction area becomes relatively small on the order
of several tens of 𝜇𝑚 usually, hence the pump intensity cannot be simply regarded as constant over the
transverse region.

In Fig ?? are illustrated the numeric simulations of the spatial profile for a Type I non-collinear BBO
under different pump focusing conditions.

Figure 6.4: no threshold

It is clearly observed that the SPDC spatial profile becomes broader and asymmetric as the focusing
increases. Specifically, the −𝜃𝑥 direction is more broadened than the +𝜃𝑥 direction, originating from the
pump walk-off, where in negative uniaxial crystals the walk-off direction is the same as the broadening’s.
Finally, a similar observation is realized also in [?].

6.2 Black box quality measurement

For each set of measurements the box surface was covered with tape to ensure that the box lid is tightly
attached to the box body, ensuring no stray light from the lab entering the setup. To verify the box quality,
hereby is compared the histogram when the camera shutter is closed to when is open but the laser is not on.
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Figure 6.5: Comparison of open and closed shutter function in abscence of light, box sealed.

The slightly increased colorbar in the open shutter measurement is not due to stray light, but as observed
in multiple frames due to cosmic rays detected in some of the frames within the measurement file that
spike the counts in 1 to 5 pixels maximally per frame and the up to saturation usually counts, are absorbed
in the averaging for the mean image.

6.3 Choosing the best mode of operation

The optimum mode of operation to acquire 1000 frames with the same exposure for each measurement file
was found to be in Kinetic Series Mode, where the is no need for external triggering and the exposure time
can be defined to the minimum possible the EMCCD provides, along with the liberty to choose the highest
Readout rate and the fastest vertical shift simultaneously. Further, between scans, the Internal Keep Clean
Cycle is performed when Frame Transfer is not applied, such that during the time between individual
scans the Image and Storage areas are kept free of charge to ensure the data captured is a true reflection of
the light that fell on it during the exposure period. Andor promises the best S/N when Frame Transfer
is enabled, but I could not use it because the exposure must be larger than the time required to shift the
image into the storage area =(image rows)·(vertical shift rate), hence for really small exposures and the
whole sensor area active was impossible to use.
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Figure 6.6: columns mean value of the whole sensor, over 500 frames acquired with closed shutter, for different
exposure times. The 3.3 is a typo, in reality is 0.3vss!

As illustrated above, the choice of 0.3 vss compared to 0.5 is optimum, as the CIC events are significantly
suppressed. For this vertical shift speed we must apply the maximum Vertical Clock Amplitude +4, to
compensate for the charge transfer when the sensor is being ’overclocked’ to eliminate possible charge
smearing.

Figure 6.7: Dark images at EM 1000 at different vertical shift speeds for 29ms exposure with -85C cooling, measured
by Andor.

The vertical stripes structure visible in the closed shutter images that have appeared during my analysis,
are caused by the vertical CIC, which is not homogeneous across the frame, as illustrated clearly in Fig ??.
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6.4 Figure of merit kappa

The authors propose a device-independent figure of merit, called kappa, described as

𝜅 =

〈(
𝑒
−
𝑝 − 𝑒

−
𝑞

)2
〉

〈(
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−
𝑝 − 𝜀

−
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)2
〉 =
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𝑛𝑝 − 𝑛𝑞
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〉

〈(
𝑛𝑝 − 𝑚𝑞

)2
〉 = 1 − 𝜂/2

where 𝜎
2
(
𝑛𝑝 − 𝑚𝑞

)
is the variance of the counts difference of opposite pixel pairs in the same frame,

divided by the difference variance of the same pair but the opposite pixel value is taken from the next
frame. The variance of the same frame pair suffers from the shot noise since the raw data considered
here are not thresholded and the presence of noise is constant in every frame. The measurements were
performed under EM 1000 as stated in the paper, probably because they aimed to span the full exposure
time range under the same camera setting. Otherwise if someone is not operating the camera in photon
counting mode, the SNR does not benefit from the extra EM application, on the contrary in high fluxes the
EM well capacity saturates before the pixel well depth does.

In the low exposures we expect the downconverted photon to be lost within the multiple CIC and stray
light from the laser. With increasing exposure time, the downconverted signal will be dominant compared
to the CIC, hence distinguishable and definitely emerging from the readout out noise floor. Along the
whole exposure range, the signal is shot-noise limited not only due to its nature but also due to the excess
noise factor. To obtain 𝑘 < 1, demands 𝜎2(𝑛𝑞 − 𝑛𝑝) < 𝜎

2(𝑛𝑞 − 𝑚𝑝). Due to the Poissonian statistics in
each frame, the statistics between frames will be Poissonian as well.

The average is done over 1000 frames for my data, while theirs 100. These opposite pixel pair locations
of the downconverted ring, are denoted by 𝑝 = (𝑥, 𝑦) and 𝑞 = (−𝑥,−𝑦), with 𝑥 and 𝑦 discrete pixel
numbers with origins in the center of the ring.

As we can observe in gallery ?? for 2x2 data where the contrast is better compared to no binning, the
background values are lower than those on the ring, meaning that the variance between frames on the
background is large than the one on the same frame at background, whilst on the ring the sequensial frame
variance is smaller than the one in the same frame.

A figure of merit promising that dividing the variance of the difference between opposite frames with
variance of the same pair but with the one pixel in the next frame, would yelp the ring area correlated
below noise.

I found the opposite behaviour compared to the one described in their paper. In low exposure times
where the frames do no exhibit the same constant illumination in the exact same positions, we obtain a
good contrast where the background is the appear as correlated light and i assume due to the fact that
it gives a constant output when its difference is measured throughout all the exposure times. On large
exposures, every photon is correlated to every other randomly resulting in blurry output with zero contrast.

The center of choice was calculated according to the figure of merit kappa, at large exposures where
i could observe a pattern. If had explored first the correlation measure scheme, then I would plots 𝑟 ′

for different center choices and would have chosen the one for which the correlation value would be the
smaller.
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(a) 0.00015s, K, 2x2 bin (b) 0.0006s, K, 2x2 bin (c) 0.00025s, K, 2x2 bin

(d) 0.0001s, K, 2x2 bin (e) 0.004s, K, 2x2 bin (f) 0.04s, K, 2x2 bin

(g) 0.4s, K, 2x2 bin (h) 1s, K, 2x2 bin

I tried further binning 4x4 where the contrast is improved, irrelevantly of the increase of the coherence
area here, the representation of the collected light on the image after binning, on the ring area is drastically
amplified compared to the lowe background. In the case of 8x8 any difference in the signal of the
neighboring pixels is just lost completely after grouping.

(a) 0.25s, kappa on 8x8 binned data (b) 0.25s, kappa on 4x4 binned data

6.4.1 Origin for cropping choice

To calculte the center of origin for cropping, i plotted multiple offsets from the original choice with all 4
directions possible simultaneously shifts and chose the cases were the shape counts discrepancy while
overlapping the rings was minimum, at maximum exposure time (Fig ??) where the colorbar scale is large
for better resolution. I provide a lower exposure also for comparison in Fig ??.
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Figure 6.10: 1s, no binning, center choice

Figure 6.11: 0.4s, no binning, center choice

The safest choice was made after the 4x4 binning where the ring geometry is more clear on its outer
diameter, by choosing a range of 5 pixels until the crop boarder from the ’whitest part ’ ring outer part at
the 4 sensor middles.

Before I concluded to this method, I was curious trying out the procedure proposed in the paper
’Massively Parallel Coincidence Counting of High-Dimensional Entangled States, 2018’, where they
obtain 106 frames, choose a pixel on the sensor that its opposite is desired to be found, and for each
individual frame they multiply all the pixels with the one chosen. Eventually a some contribution in the
opposite correlation area will arise, corresponding to possible correlate spatially photons.

I managed to sum only 8000 frames of the full frame picture, then cropped trying as symmetrically as
possible around the ring. Due to the low frame number and the absence of lens for the necessary fourier
transform, it seems like I measured a random mixture of the position and momentum plane, hence I would
not consider these pictures as accurate representations of the correlation diameter.

Figure 6.12: Chosen pixel marked in red, possible pairs in green and blue.
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Further, to find a rough estimate of the annulus center i obtained the max value of each row and column
of the 2D stack.

(a) maximum value of each column along x axis. (b) maximum value of each row along y axis.

The spikes in the counts represent the two small bright areas in the top right side of the ring. They
appears to be ’black pixels’, because they are always much less brighter then the rest of the sensor as i
have noticed, where it is not obvious in closed shutter measurements because everything is in the noise
floor anyway or, where they can’t exhibit lower values.

Before optimizing the setup with a Fourier lense, I tried estimating the center of the ring by approximating
it with a on its clear boarders where the diagonals would reveal the center, as illustrated below.

Figure 6.14: annulus outer limits for 𝑥1 = 54,𝑥2 = 425,𝑦1 = 101,𝑦2 = 450

After imposing the circles it was very clear that I should choose the 0.3vss to restrain the vertical
smearing that even further distorting the ring shape, accidentally in the same direction that the pump
walk-off does too, as described in the setup.

6.5 Photon Counting Mode sub-shot noise correlations

Following the procedure described in [?], I calculated the correlation measure for three different low
exposure times, where i also encountered the case of binning my data 2x2 and 4x4, where in the first case
the resolution would equal the coherence area of my source and the latter, twice, as normally shall be and
is applied by the authors. In the first analysis, because I binned the data after thresholding them, i had the
choise to continue treating each photon number within a sector as 1 or using its true value during summing.
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The concept of using binary data is to account for 1 or 0, when binning after imposing threshold and
continue treating the data as 0 or 1 we loose all the necessary information. A better approach that i haven
implement, would be after thresholding and binning, to consider the superpixel as 1 or 0, judging by if it
has or not any non zero counts.

Instead of restricting the analysis to 180 sectors, I calculated the correlations for 90 , 120 , 180 and finally
360 sectors. for each measurement frame, i create the respective amount of sectors by a transformation of
the pixel coordinated to radial, hence asymmetric opposite sectors result in some cases. The sectors radius
is 8 pixels maximum, accordingly to binning.

The three lowest exposure times that fulfilled the condition of average flux per pixel 𝜇 << 1 are the
0.010s, 0.015s and 0.025s.

Figure 6.15: a)Mean image of 1000 frames with background data when shutter is closed. b)Mean image of 1000
frames raw data with laser on. c)Mean image of background subtracted raw data. d)Mean image of cropped
background subtracted raw data.
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Figure 6.16: 4x4 binned frames, 0.10s
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Figure 6.17: thresholded 4x4 binned frames, 0.10s

35



Chapter 6 Analysing the experimental Data

Figure 6.18: a)Mean image of 1000 frames with background data when shutter is closed. b)Mean image of 1000
frames raw data with laser on. c)Mean image of background subtracted raw data. d)Mean image of cropped
background subtracted raw data.
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Figure 6.19: a)Mean image of 1000 frames with background data when shutter is closed. b)Mean image of 1000
frames raw data with laser on. c)Mean image of background subtracted raw data. d)Mean image of cropped
background subtracted raw data.

6.5.1 Summation as numbers

These collective plots describe the behaviour of the correlation measure, according to the binning and the
number of sectors defined, three for the three different low exposure times.
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Figure 6.20: real photon number accounted

Figure 6.21: real photon number accounted
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Figure 6.22: real photon number accounted

The only case with correlation defined well above (2𝜎) without binning is at 360 sectors, excluding the
smallest exposure. This verifies that my experimental calculations on the coherence area of the pump,
where 17mm lens would be required to reduce it below the pixel area (16𝜇𝑚), while with the 25.4mm
lens we are at 1.7 pixels uncertainty area. For this reason, we observe decrease with 2x2 binnin, but not as
efficient as with 4x4.

I must stress here, we cannot bin at maximum and expect near zero corellation values, binning size comes
with the cost of its center uncertainty determination. When we have none binned data, the uncertainty of
the origin definition can be defined up to a pixel. When assuming a superpixel, the uncertainty in position
is defined by the superpixel’s half size, hence in 8x8 binning will be 4 pixels, which affects drastically the
measured correlations. From multiple literature has been mentioned that for their setups the ideal binning
choice was either to double or equalize the detection area, compared to their coherence area.

We observe an overall decrease of r,r’ with binning for all the exposures and sectors, but the 120 sectors
that exhibits a peculiarity. The r binned cases there increase for the two larger exposures, while for r’
increase. It seems that the photon variance there is lower and the average photons higher.
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Figure 6.23: opposite sector mask pairs definition for 4x4 binned data, 120 sectors.
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Figure 6.24: overall mask for 4x4 binned data, 120 sectors.

below follow 2 sequential frames show the distribution of binary photons in them
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Figure 6.25: overall mask for 4x4 binned data, 120 sectors.
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Figure 6.26: overall mask for 4x4 binned data, 120 sectors.

In the last two mask, the total amount of photons contained within a sector seems equal to its opposite,
thus indeed the photon variance is further reduced.

The sets of images arranged bellow containing what is also illustrated in the first collective plots, is in
order to check the large values of the standard deviation, while in the collective plots only the averaging
error is plotted which is the standard deviation divided by the square root of the amount of frames.

In Fig ?? one can observe the origin of the high standard deviation, which stems from the laser power
fluctuations, increasing/decreasing respectively the amount of produced photon but also the background.
Normally if the optical path is properly optimized, laser fluctuations shall not affect the results that
drastically.
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Figure 6.27: correlation measures for 2x2 binned data, 180 sectors.(RED and GREEN swapped in the legend!)

To conclude here based on all the above plots, the case of 2x2 for our setup would yeld the same result as
if we had an uncertainty area equal or slightly smaller to the pixel, the case of 4x4 would mean uncertainty
half of the detection area , as wished in most cases cases for good resolution. The minimum correlation
measurement that can be achieved is defined by the overall quantum efficiency . The quTool thich filter
reduces it drastically, yet we dont have an adamant measure of it but is suggested at 0.3− 0.6, the premium
filter is of the order 90% and sensor quantum efficiency at 810nm at 75%, reducing to an overal 0.45%.
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Hence a minimum value of 0.95 can be accepted for r and r’. Now concerning the case of 360 sectors at
4x4 binning, because the sector number is too small and thus the amount of photons contained inside them
too, it is equivalent to realizing the case of the Noise Reduction Factor, where below 1 is translated as
sub-shot noise measuremt with minimum limit at 0.45%

6.5.2 Summation as non-zeros

Figure 6.30: every non-zero photon =1
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Figure 6.31: every non-zero photon =1

Figure 6.32: every non-zero photon =1
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The values for no binning on data, are as expected equal to the case we dont treat the numbers as non-zero.
Here now the 4x4 case for division by variance has the same behaviour as 4x4 case in the same exposure
time but for dividion with photon number. Since r is always lower than r’. somehow similarly here is
2x2 affected, having the same behaviour as in the other plot but now it starts from a value divided by 2
compared to the same exposure time.

In general along larger exposure time the values drop, but the photon variance division of the 2x2 case is
not affected. This scheme can be considered as thresholding the binary data, where the critical information
on the number of photons is lost and the correlations are underestimated. We could easily say that it gives
values not allowed by the quantum efficiency minimum.

I must mention here that the the 0.025s exposure for non-zero treatment, has been treated with a
threshold at 85counts instead of 58, by mistake, hence they are not expected to reveal the true correlation
measure.

Figure 6.33: sector=pixel, every non-zero photon =1

In Fig ?? is illustrated the collective plot, where every pixel is treated as a sector. For each frame, a
copy is created that is rotated by 180𝑜 and deduced by the original, verifying that we obtain the difference
variance between only antidiametric pairs along the sensor.

The respective plot for the case where the photons were treatred with their real value is not illustated
here, but even though its absence, I must mention that for no binning the values were laying around 1.7
and 1.9, for 2x2 and 4x4 binning in the range of 3 to 5 irrespectively the exposure time. Hence in both
configurations 𝑟 ′ was increasing but in this one 𝑟 is decreasing
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Here I chose to show a collective plot where i had included the calculation of 2 and 4 sectors. To obtain
the results for 2 sectors, I did not divide as defined in the equations because it would yeld nan values, it
was just to play around with the data. What is obtained for the 4 sectors though is quite interesting, the
exhibit way above the SNL values and in my opinion is because the binned light will exhibit the smaller
photon number variance . The 4 sections of the ring are unsimilar in counts between them but but locally,
overall this counts discrepancy is lost.

It makes absolute sense to have better results for higher exposure time, because the lower the exposure
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the higher the noise. Assume the extreme example that i would have noise and only 1 actual photon pair,
then everything would be correlated to everything and i would have wrong numbers. the more pairs i have
the more correlations of true pairs are registered , so i have better results indeed.

The reason in opposite pairs at 4x4 binning that are overestimated is that i have really low variance
of the photon number, so i divide something with something really small and i get large number that is
overestimated. One way to treat that, would be to assume that the superpixel has 0 value or 1 if any of the
contained in the binning have a non zero number. Dont forget that the expression in the photon counting
paper is given only for binary data, this is also the reason that i kept treating them as binary, but not in the
appropriate way (saying that the whole superpixel equals 1 if just one of the pixels have value 1). This is
further enhanced by the fact that the opposite pixel pair noise reduction is giving great results, because
after thresholding at 4x4, isnide one superpixel i had from 0 to 4 photons but I was diving with A+B
that could be from 1 to 8, while in the upper case I divide with the mean number coming from all the
sector/pixel averaging is very small.

The plots in this section correspond to data that belong to opposite pixel pairs within an angular mask
of 8 pixels wide, along with the calculation the Noise Reduction factor according to Eq ?? .

The noise reduction scheme for anti-correlated photons detection relies on the ability to detect large
number of anti-correlated events, where the objective is to maximise the number of joint detections of
photon-pairs, while minimising the number of detected single events. The downconverted photon-pairs
constitute the pair events, whereas single events can be detector’s dark events (dark electrons, CIC),
partially detected photon-pairs due to optical or detector’s losses, or uncorrelated photon events due to
spurious background illumination (fluorescence, ambient light, or longer wavelength present in the UV
pump).[?]

Optical losses and spurious background illumination can be mitigated by careful adjustment and
alignment of the optical components, where unfortunately for this setup it was not possible due to the
limited space between the camera entrance and the filter mounted on the quTools box, thus the Fourier lens
with respect to the optical path towards the detector is not perfectly aligned (a small tilt might be present
because it is not mounted and the body of the 25mm lens is quite large). One thing that might optimize the
setup further, would be tilting the interference filter mounted in the camera entrance, to maximise the
joint-detection of downconverted pairs at degeneracy, with respect to the filter’s transmission window.
The reason that the highest EM gain is used is to maximize the photons detection and minimize the lost
joint events.

It can be clearly seen that anti-correlated light exhibits noise below SNL, while the uncorrelated light
above, indicating the noise originating from the laser flair and the CIC. The CIC for these low exposure
time, is lower than the actual photon rate, so the main noise originates from the fact that we could not
perform a proper background subtraction where the laser is on but the crystal not inside the optical path,
in order to eliminate the laser light background. The fluctuations of 𝑟 from frame to frame is attributed to
the laser power fluctuations and the confirmed presence of noise (CIC and laser flair)

Concerning the results of 𝑟 between these three different exposures: for larger exposure it is expected to
produce and detect more correlated events, whereas the CIC events are constant in probability(within
this slightly different time window) and the laser flair is a constant background increasing linearly with
exposure, but never more than the downconverted events. The better 𝑟 values of 0.015 s exposure compared
to 0.010 is due to the amount of downconverted photons being larger than those of CIC. The largest
exposure of 0.025s gives the lowest values in all cases, this could be due to the overthresholding, where
even though the readout noise and the CIC are totally excluded, yet the chance of having 2 or more photons
impinging on 1 pixel is getting higher. Assuming 2 photons in the latter case impinging simultaneously in
1 pixel, could be either scattered light in combination with 1 downconverted photon, or 2 downconverted
photons from two different pairs, or 2 random photons. The first case would give a photon in the opposite
pixel position as well, ideally, accompanied or not by stray light and we would have a correlated event
measured. In the second case, again we would expect 2 photons ideally in the opposite pixel, where again
we have registered a correlation event. Finally in the latter case, it is the same as having 1 random photon
impinging somewhere in the sensor and being accounted as a single event. In conclusion, increasing the
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chance of double photon detection in our scheme, within reasonable limits, due to the anticorrelation
of the photon, does not severely deteriorate 𝑟 compared to as having single detections. Of course if we
were investigating different phenomena where the spatial entanglement was absent, the double detection
probably would probably deteriorate such a threshold scheme.

no binning - 0.010s

Figure 6.37: 0.010s, no binning, Thr=60 counts.

no binning - 0.015

Figure 6.38: 0.015s, no binning, Thr=70 counts.

no binning - 0.025

Figure 6.39: 0.025s, no binning, Thr=70 counts.

2x2 binning - 0.010

The previous plots of 𝑟 where compared with those where the variance suffers its full expression. Here the
figure of merit Kappa is calculated for the thresholded data this time, to see if any difference is observed,
but still as illustrated we have a blury noisy result.
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2x2 binning - 0.015

2x2 binning - 0.025

4x4 binning - 0.010
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4x4 binning - 0.015

4x4 binning - 0.025
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CHAPTER 7

Conclusion and Outlook

In this thesis, I presented the necessary theoretical background for the aimed analysis. Employing my
analysis, I found that it is possible to measure sub-shotnoise noise statistics in photon counting mode even
in the case where the coherence area is double than the pixel size, while should be at least equal size if not
half, by artificially increasing it with binning the pixel in post-process analysis. There, one should be
careful on how is treating the photon number, i.e. still binary or ’true’ photons, because in the first case
especially when considering small sectors the photon number will be practically constant and smaller
than the sector size with variance smaller than the mean photon number, hence giving a bigger value for
correlation.

I found that larger exposures in the thresholding mode give better correlations because the true photon
pairs are better distinguished among the governing CIC noise, assuming proper thresholding to avoid
double coincidences.

The three different thresholding calculation I implemented for the same exposure and give the same
threshold. The noise statistics derived from the two was slightly different, with the Matfile convolution to
overestimate the CIC and the readout noise compared to the analytical calculation. With certainty I can
say that the graphical representation was the least painful of all, plus providing the ability of choosing the
threshold according to the exposure time wished.

Some correlation between the stray light and the SPDC emission is introduced by the fluctuation of the
pump, since when the pump pulse is more or less energetic, both the SPDC and the stray light increase or
decrease accordingly. These correlations should cancel out in the photon number difference though if the
optical path is optimized properly.

The large statistical sample of 1000 frames seems to not influence the final uncertainty of the mean
values, it lowers the mean error of measurement though because of the decrease of the standard deviation.

The superpixel size used for the measurement must realize a trade-off between the visibility of the
correlation and the final uncertainty in the center determination. To increase the visibility of the quantum
correlation the superpixel area must be much greater than 𝐴𝑐𝑜ℎ. On the other side a small pixel size leads
to a small uncertainty. The best choice is the size equal to the coherence area. Even a shift of a small
fraction of a superpixel with respect to the real center determines an increasing of the noise reduction
factor. The bigger the super-pixel the larger the uncertainty in the evaluation of the symmetry center, even
when this is retrieved by using a superpixel algorithm, as mentioned in references.

I finally conclude that the key to sub-shot noise correlations observation is a precise estimation of
the coherence area and an accurate positioning of the array/sensor with respect to the physical center of
symmetry, along with the correct thresholding procedure.

Possible improvements and exploration: in binned data treat the super pixel as binary based on if they
are non zero or not. (assuming only opposite pixels either sectors, probably would give even more accurate
results.)
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APPENDIX A

Appendix

This appendix presents the tables of values obtained from the analysis treating the individual photon
number inside the mask as 1 and as non-zero.

Table A.1: Counting as non-zeros

bin-
ning

expos-
ure sectors

4 90 120 180 360

none

0.010

r’ =4.13 (±1.75
/0.06)

r = 4.48 (±4.28
/0.14)

r’ =2.02 (±0.30
/0.01)

r = 1.83 (±0.39
/0.01)

r’ =2.01 (±0.26
/0.01)

r = 1.82 (±0.34
/0.01)

r’ =2.01 (±0.22
/0.01)

r = 1.80 (±0.27
/0.01)

r’ =2.02 (±0.15
/0)
r = 1.78 (±0.19
/0.01)

0.015

r’ =4.33 (±1.66
/0.05)

r = 5.25 (±4.89
/0.15)

r’ =2.02 (±0.30
/0.01)

r = 1.75 (±0.38
/0.01)

r’ =2.00 (±0.26
/0.01)

r = 1.74 (±0.31
/0.01)

r’ =2.00 (±0.21
/0.01)

r = 1.71 (±0.26
/0.01)

r’ =1.98 (±0.15
/0.01)
r = 1.69 (±0.18
/0.01)

0.025

r’ =4.56 (±1.54
/0.05)

r = 5.96 (±5.15
/0.16)

r’ =2.01 (±0.30
/0.01)

r = 1.63 (±0.35
/0.01)

r’ =1.99 (±0.26
/0.01)

r = 1.62 (±0.30
/0.01)

r’ =1.99 (±0.21
/0.01)

r = 1.58 (±0.23
/0.01)

r’ =1.97 (±0.15
/0.01)
r = 1.56 (±0.16
/0.01)

2x2

0.010

r’ =4.08 (±1.77
/0.06)

r = 2.78 (±2.76
/0.09)

r’ =1.98 (±0.30
/0.01)

r = 1.26 (±0.27
/0.01)

r’ =1.99 (±0.26
/0.01)

r = 1.26 (±0.24
/0.01)

r’ =1.95 (±0.21
/0.01)

r = 1.33 (±0.20
/0.01)

r’ =1.90 (±0.15
/0)
r = 1.32 (±0.14
/0)

0.015

r’ =4.12 (±1.77
/0.06)

r = 2.39 (±2.20
/0.07)

r’ =1.93 (±0.31
/0.01)

r = 1.04 (±0.22
/0.01)

r’ =1.96 (±0.27
/0.01)

r = 1.05 (±0.20
/0.01)

r’ =1.88 (±0.22
/0.01)

r = 1.09 (±0.16
/0.01)

r’ =1.80 (±0.16
/0)
r = 1.02 (±0.12
/0)

0.025

r’ =4.26 (±1.66
/0.05)

r = 1.84 (±1.80
/0.06)

r’ =1.86 (±0.31
/0.01)

r = 0.77 (±0.17
/0.01)

r’ =1.92 (±0.27
/0.01)

r = 0.78 (±0.15
/0)

r’ =1.76 (±0.21
/0.01)

r = 0.75 (±0.19
/0)

r’ =1.68 (±0.16
/0.01)
r = 0.75 (±0.09
/0)
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4x4

0.010

r’ =3.99 (±1.77
/0.06)

r = 0.61 (±0.62
/0.02)

r’ =1.24 (±0.26
/0.01)

r = 0.30 (±0.08
/0)

r’ =0.96 (±0.20
/0.01)

r = 0.32 (±0.08
/0)

r’ =1.14 (±0.20
/0.01)

r = 0.30 (±0.07
/0)

r’ =0.57 (±0.10
/0)
r = 0.39 (±0.07
/0)

0.015

r’ =4.07 (±1.74
/0.06)

r = 0.32 (±0.34
/0.01)

r’ =0.85 (±0.21
/0.01)

r = 0.15 (±0.05
/0)

r’ =0.62 (±0.15
/0)

r = 0.17 (±0.05
/0)

r’ =0.75 (±0.17
/0.01)

r = 0.15 (±0.04
/0)

r’ =0.23 (±0.06
/0)
r = 0.15 (±0.04
/0)

0.025
r’ =nan

r = 0.10 (±0.11
/0)

r’ =0.34 (±0.12
/0)

r = 0.04 (±0.02
/0)

r’ =0.29 (±0.08
/0)

r = 0.07 (±0.02
/0)

r’ =0.29 (±0.10
/0)

r = 0.04 (±0.02
/0)

r’ =0.07 (±0.03
/0)
r = 0.04 (±0.04
/0)

Table A.2: Counting as integer numbers

bin-
ning

expos-
ure sectors

4 90 120 180 360

none

0.010

r’ =4.13 (±1.75
/0.06)

r = 4.48 (±4.28
/0.14)

r’ =2.02 (±0.30
/0.01)

r = 1.83 (±0.39
/0.01)

r’ =2.01 (±0.26
/0.01)

r = 1.82 (±0.34
/0.01)

r’ =2.01 (±0.22
/0.01)

r = 1.80 (±0.27
/0.01)

r’ =2.02 (±0.15
/0)
r = 1.78 (±0.19
/0.01)

0.015

r’ =4.33 (±1.66
/0.05)

r = 5.25 (±4.89
/0.15)

r’ =2.02 (±0.30
/0.01)

r = 1.75 (±0.38
/0.01)

r’ =2.00 (±0.26
/0.01)

r = 1.74 (±0.31
/0.01)

r’ =2.00 (±0.21
/0.01)

r = 1.71 (±0.26
/0.01)

r’ =1.98 (±0.15
/0.01)
r = 1.69 (±0.18
/0.01)

0.025

r’ =4.56 (±1.54
/0.05)

r = 5.96 (±5.15
/0.16)

r’ =2.01 (±0.30
/0.01)

r = 1.63 (±0.35
/0.01)

r’ =1.99 (±0.26
/0.01)

r = 1.62 (±0.30
/0.01)

r’ =1.99 (±0.21
/0.01)

r = 1.58 (±0.23
/0.01)

r’ =1.97 (±0.15
/0.01)
r = 1.56 (±0.16
/0.01)

2x2

0.010

r’ =4.49 (±1.54
/0.05)

r = 5.43 (±4.83
/0.15)

r’ =1.98 (±0.31
/0.01)

r = 1.83 (±0.39
/0.01)

r’ =1.97(±0.26
/0.01)

r = 1.82 (±0.34
/0.01)

r’ =1.96 (±0.22
/0.01)

r = 1.80 (±0.27
/0.01)

r’ =1.91 (±0.15
/0.01)
r = 1.78 (±0.19
/0.01)

0.015

r’ =4.27 (±1.68
/0.05)

r = 4.76 (±4.53
/0.14)

r’ =1.95 (±0.31
/0.01)

r = 1.75 (±0.38
/0.01)

r’ =1.95 (±0.26
/0.01)

r = 1.75 (±0.32
/0.01)

r’ =1.91 (±0.22
/0.01)

r = 1.72 (±0.26
/0.01)

r’ =1.86 (±0.16
/0.01)
r = 1.70 (±0.19
/0.01)

0.025

r’ =4.49 (±1.54
/0.05)

r = 5.43 (±4.83
/0.02)

r’ =1.89 (±0.31
/0.01)

r = 1.57 (±0.33
/0.01)

r’ =1.90 (±0.26
/0.01)

r = 1.58 (±0.29
/0.01)

r’ =1.85 (±0.21
/0.01)

r = 1.52 (±0.23
/0.01)

r’ =1.75 (±0.16
/0.01)
r = 1.50 (±0.17
/0.01)
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4x4

0.010

r’ =4.13 (±3.90
/0.12)

r = 4.12 (±1.74
/0.06)

r’ =1.83 (±0.40
/0.01)

r = 1.67 (±0.30
/0.01)

r’ =1.87 (±0.36
/0.01)

r = 1.46 (±0.25
/0.01)

r’ =1.80 (±0.29
/0.01)

r = 1.61 (±0.22
/0.01)

r’ =1.79 (±0.23
/0.01)
r = 0.91 (±0.12
/0)

0.015

r’ =4.53 (±4.44
/0.14)

r = 4.19 (±1.72
/0.05)

r’ =1.76 (±0.38
/0.01)

r = 1.55 (±0.29
/0.01)

r’ =1.81 (±0.33
/0.01)

r = 1.32 (±0.25
/0.01)

r’ =1.72 (±0.27
/0.01)

r = 1.48 (±0.21
/0.01)

r’ =1.71 (±0.21
/0.01)
r = 0.75 (±0.10
/0)

0.025

r’ =5.15 (±4.70
/0.15)

r = 4.38 (±1.61
/0.05)

r’ =1.58 (±0.34
/0.01)

r = 1.31 (±0.25
/0.01)

r’ =1.67 (±0.30
/0.01)

r = 1.05 (±0.20
/0.01)

r’ =1.54 (±0.24
/0.01)

r = 1.23 (±0.19
/0.01)

r’ =1.53 (±0.20
/0.01)
r = 0.50 (±0.07
/0)
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