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CHAPTER 1

Introduction

With the development of increasingly large databases a need for better and more efficient ways of
searching through these arises, as with modern computers finding a file inside a database of size 𝑁

requires a computation time of order 𝑂 (𝑁). It is possible to speed this process up to order 𝑂 (
√
𝑁)

using quantum computers by running the Grover’s algorithm [1]. Different to classical computers,
which use transistors to run logical operations using bits, quantum computers require gate operations
on qubits. In contrast to classical bits, these can not only be either 0 or 1, but rather can be a super
position of both. One of the many challenges of running quantum computers are the limited coherence
times of qubits [2], which makes communication between different systems separated over larger
distances difficult. One way to tackle this challenge is by using photons. Photons inherently do not
interact with other photons, though this can be achieved using methods of nonlinear quantum optics.
[3]

At the Ytterbium Rydberg Nonlinear Quantum Optics experiment in Bonn the manipulation and
interaction between single photons using Rydberg-Rydberg interactions between single atoms in an
ultracold Ytterbium gas is investigated. With this the dynamics of a strongly interacting quantum
system are mapped onto freely propagating photons, which can then be analyzed. In order to measure
the single photons there are already two setups using heterodyne detection methods which measure
conditional phase shifts introduced by the medium [4], [5], [6],[7]. The phase is measured as it
contains information about how the photons have interacted with the given medium. We aim to now
go one step further with homodyne detection. This gives the possibility to reconstruct the density
matrix and wigner function of the created single photons[8]. To do this I follow the setup from Dr.
Alexei Ourjoumtsev’s laboratory in Collège de France in Paris for 795 nm laser light [9], but using
399 nm laser light, as we use a 2-photon transition of Ytterbium from the ground state to a Rydberg
state with 399 nm and 395 nm.

In this thesis I characterize a specific balanced photo diode to figure out, if the homodyne setup
is feasible to reconstruct for 399 nm laser light. For this I first give an insight in the theoretical
background of homodyne detection and noise characterization in chapter 2. I then describe the full
homodyne setup in the first part of chapter 3, followed by a simpler setup to compare the conversion
gains given by the photo diode data sheet and measured values. In the next step I analyze the full
setup with equal powers in probe and local oscillator beam to create a prediction model with which I
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Chapter 1 Introduction

can align the setup when taking the probe beam to low beam powers. In the last step I check the phase
stability of the setup to determine whether it suffices to passively scan the phase or if it is necessary
to implement phase controls. In chapter 4 I discuss the results and give possible improvements and
further perspectives.
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CHAPTER 2

Theory

2.1 Interferometry

The following theoretical background is taken from “Quantum Optics: an Introduction” by Mark Fox
[10].

2.1.1 Classical Interferometer

Interference can be seen when dividing light waves and recombining them with a phase difference. A
well known experiment for this is the Mach-Zehnder-Interferometer, as seen in Figure 2.1. Assuming

Laser

D1

D2

Figure 2.1: Mach Zehnder Interferometer with two beamsplitters, the top left being of variable splitting ratio
and the bottom right being a 50:50 splitter.

equal path lengths, the electric fields 𝜖1 and 𝜖2 at the two detectors can be written as an overlap of
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Chapter 2 Theory

reflected and transmitted beams 𝜖r and 𝜖t of the first beamsplitter on the second 50:50 beamsplitter

𝜖1 =
1
√

2
(𝜖t + 𝜖r) (2.1)

𝜖2 =
1
√

2
(𝜖t − 𝜖r). (2.2)

Using the splitting ratio of the first beam splitter this can be rewritten using

𝜖t = 𝑡 ∗ 𝜖0 (2.3)
𝜖r = 𝑟 ∗ 𝜖0 (2.4)

(2.5)

where 𝑟, 𝑡 are the complex reflection and transmission coefficients which require |𝑟 |2 + |𝑡 |2 = 1, to

𝜖1 =
1
√

2
(𝑡𝜖0 + 𝑟𝜖0) (2.6)

𝜖2 =
1
√

2
(𝑡𝜖0 − 𝑟𝜖0). (2.7)

Introducing a phase shift on the transmitted beam allows us to control the interference at the detectors.

𝜖1 =
𝜖0√

2
(𝑡𝑒𝑖Φt + 𝑟) (2.8)

𝜖2 =
𝜖0√

2
(𝑡𝑒𝑖Φt − 𝑟). (2.9)

2.1.2 Stepping towards homodyning

Let us now identify the transmitted beam as the Local Oscillator and the reflected beam as the Probe
beam. We can rewrite Equation 2.8 and 2.9 as

𝜖1 =
1
√

2
(𝜖LO𝑒

iΦLO + 𝜖s) (2.10)

𝜖2 =
1
√

2
(𝜖LO𝑒

iΦLO − 𝜖s). (2.11)

Additionally we can rewrite the probe beam as parts of it’s quadratures using

𝜖s = 𝜖
𝑋1
s + i𝜖𝑋2

s (2.12)

to give us

𝜖1 =
1
√

2
((𝜖LO cosΦLO + 𝜖

𝑋1
s ) + i(𝜖LO sinΦLO + 𝜖

𝑋2
s )) (2.13)

𝜖2 =
1
√

2
((𝜖LO cosΦLO − 𝜖

𝑋1
s ) + i(𝜖LO sinΦLO − 𝜖

𝑋2
s )). (2.14)
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2.2 Homodyne vs Heterodyne Detection

If we now subtract the two intensities at both detectors from each other we get a differential intensity of

𝑖diff ∝ 𝑖1 − 𝑖2 (2.15)
∝ 𝜖1𝜖

∗
1 − 𝜖2𝜖

∗
2 (2.16)

∝
√

2𝜖LO(𝜖
𝑋1
s cosΦLO + 𝜖

𝑋2
s sinΦLO). (2.17)

We can therefore scan the two quadratures of the probe beam simply by rotating the phase of the local
oscillator.

2.1.3 Single photon Interferometry

Following Chapter 13 from “Getting Started in Quantum Optics” by Ray LaPierre [11] and replacing
the classical fields with a wave function

��Ψin
〉
= |Ψ⟩1

��𝛼LO
〉
, using 𝑎̂ and 𝑎̂

† to describe the beam
splitter and < 𝑛1,2 >=

〈
Ψout

��
1,2 𝑎̂

†
𝑎̂
��Ψout

〉
1,2 as a photon count, we can derive the two outputs to be〈

𝑛1
〉
=

〈
Ψin

�� 1
2

(
𝑎̂
†
1𝑎̂1 − 𝑎̂

†
1𝑎̂2 − 𝑎̂

†
2𝑎̂1 + 𝑎̂

†
2𝑎̂2

) ��Ψin
〉

(2.18)〈
𝑛2

〉
=

〈
Ψin

�� 1
2

(
𝑎̂
†
1𝑎̂1 − 𝑎̂

†
1𝑎̂2 − 𝑎̂

†
2𝑎̂1 + 𝑎̂

†
2𝑎̂2

) ��Ψin
〉
. (2.19)

Therefore the homodyne signal becomes:

𝑠𝑖𝑔𝑛𝑎𝑙 ∝
〈
𝑛1

〉
−

〈
𝑛2

〉
(2.20)

∝
〈
𝛼LO

��
2 ⟨Ψ|1

(
𝑎̂
†
1𝑎̂2 + 𝑎̂

†
2𝑎̂1

)
|Ψ⟩1

��𝛼LO
〉

2 (2.21)

∝ ⟨Ψ|
(
𝛼LO𝑎̂

†
1 + 𝛼

′
LO𝑎̂

†
1

)
|Ψ⟩ . (2.22)

Using 𝛼LO = |𝛼LO |𝑒
𝑖ΦLO , the Euler relation and the definition for the quadrature operators

𝑄̂ =
1
√

2

(
𝑎̂ + 𝑎̂

†
)

(2.23)

𝑃̂ =
−i
√

2

(
𝑎̂ − 𝑎̂

†
)

(2.24)

we get 〈
𝑛1

〉
−

〈
𝑛2

〉
=
√

2|𝛼LO | [cosΦLO ⟨Ψ|𝑄̂ |Ψ⟩ + sinΦLO ⟨Ψ|𝑃̂ |Ψ⟩] . (2.25)

As seen before, the two quadratures can be measured by scanning the phase of the local oscillator. In
the case of |Ψ⟩ = |𝛼⟩ being a coherent state with eigenvalue 𝛼 = |𝛼 |𝑒iΦ. The two quadratures Q and P
correspond to the real and imaginary parts of 𝛼.

2.2 Homodyne vs Heterodyne Detection

One of the key differences between homodyne and heterodyne detection is that with heterodyning,
the local oscillator and probe beam are detuned in order to see a beat note signal, which can then be
compared to a reference signal. This allows a conditional phase to be measured. In homodyning
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Chapter 2 Theory

the local oscillator and probe beam are mode matched. Taking short measurements over 100 µs
while the phase of the local oscillator is scanned, gives information on the quadratures, with which
either a density matrix or a Wigner function can be recreated using a maximum likelihood estimation
algorithm.

2.3 Noise Characterization

For light systems there are different types of noise. There is white noise, which corresponds to a
constant shift in noise, shot noise, which stems from the poissonian nature of photons, and technical
noise, which behaves as 𝜎2

technical ∝ 𝑃
2. Shot noise is defined as

𝜎
2
shot = 2𝑒𝐼Δ𝜈 (2.26)

with 𝑒 being the electron charge, 𝐼 the current signal and Δ𝜈 the limiting bandwidth. For our purposes,
we need to rewrite the current 𝐼 to the incoming laser power 𝑃. For this we consider the amount of
electrons being created for a specific laser power 𝑃. This can be written as

𝐼 =
𝑃𝑒

ℏ𝜔
(2.27)

where 𝜔 is the frequency of the used laser light. As the detector itself has a limited efficiency, we
need to additionally include a quantum efficiency term 𝜂0. With this, the shot noise can be written as

𝜎
2
shot = 𝜂0

𝑃𝑒
2

ℏ𝜔
2Δ𝜈. (2.28)

As we wish to have the shot noise given in terms of voltage, we use the trans-impedance gain 𝐺0 of
the used detector in order to convert from current to voltage, giving us

𝜎
2
shot,V = 𝜂0

𝑃𝑒
2

ℏ𝜔
2𝐺2

0Δ𝜈. (2.29)

Finally, as the photo current hitting the detector will be dominated by the local oscillator beam, we
can neglect the probe beam 𝑃 = 𝑃LO, finally giving us

𝜎
2
shot =

𝜂0𝑃LO𝑒
2

ℏ𝜔
2𝐺2

0Δ𝜈. (2.30)
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CHAPTER 3

Experiment

In this Chapter I first discuss the full experimental setup I recreate. I then start by characterizing the
used Balanced Photo Detector (BPD) using the given data sheet, followed by the aligning procedure
of the Interferometer for the Homodyne Detector and ending with the noise characterization of the
Interferometer.

3.1 Overview of the experimental setup

The homodyne detector setup as presented in Figure 3.1 is based on the setup from Alexei Ourjoumtsev’s
laboratory in Collège de France in Paris [8], which can be seen in Figure 3.2. Starting at the fibre, we
couple p-polarized light at 399 nm (see chapter 1) taken from the laser table of the YQO experimental
setup and send it onto a polarized beam splitter (PBS) in order to clean the polarization. After this the
light is sent onto a beam splitter (BS) which divides the beam into two arms: the local oscillator (LO,
dark blue beam), as a classical beam, and the Probe beam (light blue beam), which lies in the few
photon regime. Next, following the path of the beam, the AOMs are used to control the frequency and
intensity of the light. The faraday isolator in the probe beam ensure that there is no back-scattered
light that gets coupled back into the fibre, as it could interfere with the YQO experimental setup.
By aligning the Probe and LO beam on the two inputs of the beam splitter, an interference signal is
generated at the outputs of the BS. As seen in chapter 2, it is important for the detector to receive
two balanced inputs. To focus the beams onto the photo diodes, we use concave mirrors, as using
lenses would introduce further losses in laser power. The photo diodes are additionally hit at an angle.
This allows us to power balance the detector firstly by angle tuning the inputs, and secondly using a
𝜆/2-plate plate to introduce controlled reflections. This works as the laser hits the diodes close to the
Brewster angle, where p-polarized light is transmitted, whilst s-polarized light is reflected. Afterwards,
we can measure short signals on the BPD on the scale of 100 µs for multiple different phases, either by
passively scanning if the phase drift of the interferometer allows it, or by using the AOMs to shift the
phase for each measurement. These measurements give us information on the quadratures depending
on the phase, as seen in Equation 2.25. After taking enough measurements these can be fed into a
maximum-likelihood algorithm to reconstruct the density matrices and wigner functions of the probe
beam [9]. The short measurements that are used for the quantum state reconstruction go past the scope
of this thesis.

7



Chapter 3 Experiment

Figure 3.1: Homodyne setup using a single input, split into a local oscillator beam (dark blue) and a probe beam
(light blue) with AOMs used to control intensity and frequency of the beams, aligned on an interferometer,
focused onto the BPD

3.2 Characterization of Balanced PDs

Before starting work on creating the proper homodyne setup, the Balanced Detector needs to be
characterized. For this I use the setup as seen in Figure 3.3. The incoming laser beam is first sent onto
a 𝜆/2-plate , followed by a PBS in order to prepare a clean p-polarized beam. As in this setup the
photo diodes are hit straight on, I use an angled glass plate to mimic the angled diodes. This way I can
once again fine tune the balancing using a 𝜆/2-plate . The lenses are placed in a way such that the
entire beam hits the most amount of area of the photo diode. The Detector itself has three different
outputs, two outputs to monitor the individual photo diodes called Monitor+ and Monitor-, and an RF
output which is an amplified signal resulting from the subtraction of both photo diodes.

Alignment and balancing Let’s start with the alignment of the beam onto the detector. I aligned
the beam by first using an iris mounted to the detector, such that the beam is orthogonal to the detector
plane. I then fix the lenses with a focal point 𝑓 = 75 mm at a distance close to the focal point. When
looking at the monitor output signal using an oscilloscope, scanning the x and y axes using the previous
mirror we can see a plateau with a rising and a falling edge. We fix the distance of the lens in such a
way, that the area of the edges and the plateau all roughly take up a third of the entire signal area. This
is done for both lenses. This results in having most of the photo diode covered by the beam, without
cutting off a large portion of the beam. In order to properly center both beams on the detector, I look

8



3.2 Characterization of Balanced PDs

Figure 3.2: Homodyne detector setup of Alexei Ourjoumtsev’s laboratory in Collège de France in Paris for
795 nm laser light, which we base our setup in Figure 3.1 off of, with an additional mode matching lens, and a
Probe beam coming from an atom cloud, opposed to dividing a single laser.

at the RF output using the oscilloscope and find, that when scanning the area of the plateau, I get a
maximum (or minimum, depending on which photo diode is being used) at a point that corresponds to
the beam being centered on the diode. With a now properly aligned detector, I start balancing it. First
I check the offset of the detector when no light hits the photo diodes. This is called the dark noise
signal of the detector. The detector is properly balanced, when the offset of the RF signal, with laser
light, equals the offset of the dark noise RF signal. Using the optimally aligned setup, I characterize
the BPD.

Calculating characteristic values of the detector As this type of detector has yet to be used in
the research group, we wish to know the characteristics of the detector, and how these deviate from the
specifications given by the manufacturer. Additionally this allows us to make predictions on how the
detector behaves for a given input, which will be used at a later stage for further alignment processes.
I begin by checking a few specifications given on the data sheet of the detector1 , mainly the RF and
monitor output conversion gain and the responsivity. From these values I can calculate the expected

1 Detector/Model: Thorlabs Free-Space Balanced Amplified Photo detector / PDB230A

9



Chapter 3 Experiment

f=75mm

BPD

Glassplate

λ/2

λ/2

BS004 PBS

Figure 3.3: Setup without the interferometer and using only the local oscillator to characterize characteristic
detector values and noise, as described in section 3.2

Table 3.1: BPD specific characterising values taken from the thorlabs datasheet 1

RF Output Conversion Gain 𝐺
RF
conv 26.5 × 103 V/W @ 820 nm

Monitor Output Conversion Gain 𝐺
Mon
conv 10 V/mW @ 820 nm

Max Responsivity 𝑅(𝜆) 0.53 A/W @ 820 nm
0.15 A/W @ 399 nm

trans impedance gain using the formula given in the data sheet:

𝐺
Mon
TI =

𝐺
Mon
conv

𝑅(820 nm) = 18 868 V/A (3.1)

𝐺
RF
TI =

𝐺
RF
conv

𝑅(820 nm) = 50 000 V/A. (3.2)

As this value is wavelength independent I use it to calculate the expected conversion gains for 399 nm:

𝐺
𝑀𝑜𝑛
conv (399 nm) = 𝑅(399 nm) · 𝐺TI = 2.83 V/mW (3.3)

𝐺
𝑅𝐹
conv(399 nm) = 𝑅(399 nm) · 𝐺TI = 7.5 V/mW. (3.4)

Additionally I calculate the expected quantum efficiency of the detector at 399 nm by dividing the
Responsivity 𝑅 at 399 nm by the Responsivity R for the case of one photon creating one electron. Let
us first calculate the Responsivity R for 399 nm in the case of 100 % quantum efficiency:

R(399 nm) = 𝑒
−

𝛾399 nm
=

1.602 × 10−19 C
4.98 × 10−19 J

= 0.322 A/W.R(820 nm) = 0.661 A/W (3.5)

Using this I get:

𝑄𝐸 =
𝑅(399 nm)

R = 46.6 %. (3.6)
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3.2 Characterization of Balanced PDs

Comparing this to the quantum efficiency given for 820 nm ,with a responsivity 𝑅(820 nm) = 0.53 A/W,
of 𝑄𝐸 = 80.2 %, we see that the efficiency for the blue is much lower than for infrared. This loss can
be seen in form of reflections on the surface of the detector. This also means that we can “increase”
the efficiency by reflecting and refocusing the reflected light back onto the detector.

Measuring characteristic values of the detector Using these expected values I now measure
them with the setup seen in Figure 3.3 to see if the detector full fills the expectations. To measure the
Conversion Gains of the Monitors, I use

𝐺conv =
𝐼in

𝑈osci
(3.7)

where 𝐼in is the laser power measured infront of the PDs and 𝑈osci is the voltage measured on the
oscilloscope. The RF Conversion Gain is measured by blocking one of the PDs, making sure not to
saturate the amplified RF Output. The results are found in Table 3.2. Whilst the monitor conversion

Table 3.2: Comparison between data sheet values at 820 nm and the measured values at 399 nm

820 nm 399 nm expected 399 nm measured
𝐺

RF
conv 26.5 V/mW 7.5 V/mW (6.56 ± 0.37) V/mW

𝐺
Mon
conv 10 V/mW 2.83 V/mW (2.75 ± 0.10) V/mW

𝐺
RF
conv

𝐺
Mon
conv

2.65 — (2.39 ± 0.12)

gain 𝐺
𝑀𝑜𝑛
conv is inside a one sigma uncertainty, the RF conversion gain 𝐺

𝑅𝐹
conv is off by roughly 3

sigma.This is a significant deviation from the specified value, which could stem from slightly deviating
amplifier values, caused by voltage deviations or production impurities. It doesn’t pose any further
issues, as this deviation is now known and can be taken into account for at later stages.

3.2.1 Detector noise characterization

Next we would like to know how the detector noise behaves for different laser powers, if the detector
full fills it’s specified bandwidth of 100 MHz and if we are in the shot noise regime for the laser powers
we are using. For this I will look at the noise spectrum of the detector for different laser powers and
frequency ranges. I do this by measuring the RF output using a spectrum analyzer. We chose the
frequency ranges to be 0...150 MHz and 0...10 MHz . These ranges are chosen specifically for one
to look at the full bandwidth of the detector and the other to look at the frequency range that would
be used for the state reconstruction. The used spectrum analyzer and it’s settings are described in
Appendix A.

Measured spectrum with power-balanced beams Let’s start with the 0...150 MHz Range. We
expect to see a flat spectrum, which falls off about −3 dB at 100 MHz due to the bandwidth. For
increasing laser powers we expect the spectrum to be shifted upwards, as the intensity noise scales
proportionally to the intensity. The data can be found in Figure 3.4. Here we can see a couple of things:
starting with the far left, we can see the expected 1/ 𝑓 -noise. After this we can see the increased
amplitude of the signals for rising laser power, in addition to a spectrum of the spectral analyzer
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Chapter 3 Experiment

instrument noise. Additionally there is a bump at around 100 MHz, which stems from the detector, as
it can’t be seen in the instrument noise spectrum. I subtract the measured dark noise, as can be seen in
Figure 3.5, to get a nice plateau up to around 70 MHz, with the signals dropping about 3 dBm until
100 MHz, which corresponds to the expected bandwidth of 100 MHz of the BPD. We can also see
some sharp peaks in the spectrum, which will be discussed later. The 1.05 mW laser power spectrum
fluctuations can be attributed to a problem with saving the data on the spectrum analyzer. The data
is left in for completeness. Moving on to the 0...10 MHz Range, which can be found in Figure 3.6.

0 20 40 60 80 100 120 140
Frequency / MHz

85

80

75

70

65

60

55

50

Am
pl

itu
de

 / 
dB

m

SpecNois
0.000mW
0.150mW
0.330mW
0.600mW

0.750mW
1.050mW
1.300mW
1.650mW
1.900mW

Figure 3.4: Visualized raw data from the balanced Detector Setup with a range of 0...150 MHz for the spectrum
analyzer instrument noise and different laser powers. The y-axis corresponds to the noise amplitude given in
dBm and the x-axis to the frequency given in MHz

As can be seen already in the 0...150 MHz spectrums, this part of the spectrum is flat, with only the
1/ 𝑓 -noise which can be seen on the left hand side. Removing the dark noise again (see Figure 3.7)
leads to a plateau of varying height based on the laser power. As the range is small, we don’t notice
any drop in signal towards higher frequencies. In this spectrum we don’t see any of the sharp peaks,
apart from the highest laser power.

Some interesting aspects in both Figure 3.4 and 3.6 are the peaks at specific frequencies. We
differentiate between peaks in the dark spectrum (0 mW) and in the other spectra. The peaks in the
dark spectrum are caused by radio stations which are picked up and amplified by the detector itself.
These peaks can also be seen in the other spectra. The peaks that are left in the spectra with incoming
laser power stem from laser noise, which isn’t completely suppressed in the detector. One example is
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3.2 Characterization of Balanced PDs
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Figure 3.5: Visualized data with removed dark noise from the balanced Detector Setup with a range of
0...150 MHz for different laser powers. The y-axis corresponds to the noise amplitude given in dBm and the
x-axis to the frequency given in MHz

at 25 MHz. These peaks can be more clearly seen in the fully unbalanced setup, i.e. by blocking one
input.

Measured unbalanced spectrum with one beam blocked We want to look at the unbalanced
spectra to more specifically see where the peaks in the balanced spectra come from. First looking at
the 0...150 MHz range as seen in Figure 3.8, we see a very noisy spectrum, which is to be expected as
none of the intensity noise is cancled out. Also we can see that the 1.3 mW laser power spectrum
is almost equal to the Spectrum Analyzer noise. This is due to the detector being saturated. More
importantly we can see a lot of sharp peaks at different frequencies, which are again not visible in
the dark spectrum. Looking at 25 MHz we can see large peaks. From this I conclude, that the peaks
stem from technical noise of the laser. When subtracting the dark noise we can also see a very strong
1/ 𝑓 -noise contribution, which leads up to roughly 50 MHz. Let’s take a closer look at the range in
Figure 3.10. We can see two types of spectra, one for the powers from 0.07 mW to 0.6 mW, excluding
0.45 mW with sharp peaks and two (0.45 mW 1.3 mW with broad peaks. The spectra with broad
peaks are caused by the laser going into multi mode, whilst the sharp peaks are in single mode. As we
require the laser to be in single mode, the multi mode spectra don’t give us any relevant information.
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Figure 3.6: Visualized raw data from the balanced Detector Setup with a range of 0...10 MHz for the spectrum
analyzer instrument noise and different laser powers. The y-axis corresponds to the noise amplitude given in
dBm and the x-axis to the frequency given in MHz

Characterizing the detector shot noise Using Equation 2.30 and the values from section 3.2 I
calculate the theoretical shot noise to be

(𝜎2
shot)0...150 MHz = (18.4 ± 0.2) × 10−3 µW/mW · 𝑃LO (3.8)

(𝜎2
shot)0...10 MHz = (9 ± 1) × 10−3 µW/mW · 𝑃LO (3.9)

with Δ𝜈 = 20 MHz for the 0...150 MHz range and 10 MHz for the short range. Going back to the
balanced spectra, I calculate the shot noise of the removed dark noise spectra of Figure 3.5 and 3.7.
To do this I first need to convert dBm to W/Hz so I can integrate over the above mentioned ranges.
This is explained in subsection A.1.1. The resulting noise powers are plotted against the used laser
powers in order to see the shot noise of our setup (see Figure 3.12 and 3.13). As one can see, there is
a linear relation between laser power and noise power, with a slope of (8.31 ± 0.05) × 10−3 µW/mW
for 0...10 MHz and (16.6± 0.2) × 10−3 µW/mW for 0...150 MHz . The measured shotnoise coincides
with the theoretical predictions, we are therefore in the shot noise limited regime. We can also see an
increase in the noise power for the 1.9 mW laser power mesaurement, which could indicate the start of
the technical noise regime.
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Figure 3.7: Visualized data with removed dark noise from the balanced Detector Setup with a range of
0...10 MHz for different laser powers. The y-axis corresponds to the noise amplitude given in dBm and the
x-axis to the frequency given in MHz

3.3 Aligning Interferometer

Let us now head towards the proper homodyne setup.I do this in two steps, first I use the setup given in
Figure 3.1 with the 50:50 beam splitter, as this allows me to characterize and optimize the alignment
of both beams on the interferometer. The AOMs are used to introduce a detuning of 100 Hz such
that we see a beat frequency. For two balanced inputs on the interferometer we theoretically expect a
visibility of 100 %. I can therefore use this fact to mode match both beams on the interferometer. The
used AOMs require a beam width of less than 0.45 mm. This results in a short Rayleigh length of
about 0.5 m, which causes the beam to diverge quickly, as can be seen in Figure 3.14. The setup itself
is only about 0.95 m long, which in turn means that the beam width at the end of the setup is roughly 4
times the size, which is still small enough for us to focus it onto the detector using concave mirrors.

3.3.1 Alignment using a 50:50 beam splitter

In order to see interference I need to properly mode match the two beams coming from the first 50:50
BS on the second beam splitter. I do this by first blocking one beam and aligning the probe beam such
that the detector is balanced (see section 3.2). After this I unblock the beam and use the two mirrors
in front of the second beam splitter to match the modes of both beams. Once the beam is roughly
aligned I start seeing the interference on the oscilloscope. To precisely mode match I can now use
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Figure 3.8: Visualized raw data from the fully balanced Detector Setup with a range of 0...150 MHz for the
spectrum analyzer instrument noise and different laser powers. The y-axis corresponds to the noise amplitude
given in dBm and the x-axis to the frequency given in MHz

the interference fringes as a measure of the quality of the matching. Optimally I would like a 100 %
contrast in our interference. By optimizing the beam alignment I attempt to get as close as possible to
the desired contrast.

Visibility After the alignment is as good as possible, I use the visibility to check the quality of the
mode matching. The interference fringes for the aligned setup can be seen in Figure 3.15. Fitting
some sinus functions with a constant shift to the data I calculate the visibility using

𝜈 =
𝐼max − 𝐼min
𝐼max + 𝐼min

(3.10)

where 𝐼max and 𝐼min are given by

𝐼max = 𝑐 + 𝐴 (3.11)
𝐼min = 𝑐 − 𝐴 (3.12)

with the values from the fit, which are given in Table 3.3. Using these I calculate the visibility to
be 𝜈

Mon+
= (99.7 ± 0.1) % and 𝜈

Mon−
= (99.77 ± 0.11) %, which correspond to almost the highest

possible quality of mode matching. These values could be further improved by using precision tools,
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Figure 3.9: Visualized data with removed dark noise from the fully unbalanced Detector Setup with a range of
0...150 MHz for different laser powers. The y-axis corresponds to the noise amplitude given in dBm and the
x-axis to the frequency given in MHz

Table 3.3: Sinus fit data for the calculation of the visibility from Figure 3.15 with fits of the form 𝑦 =

𝐴 sin ( 𝑓 𝑥 + 𝜙) + 𝑐

Monitor-
Amplitude A (0.7748 ± 0.0006) V
Frequency 𝑓 (101.40 ± 0.02) MHz

shift 𝜙 (−1.0227 ± 0.0005) 𝜋
constant 𝑐 (0.7771 ± 0.0005) V

Monitor+
Amplitude A (0.7690 ± 0.0007) V
Frequency 𝑓 (101.40 ± 0.02) MHz

shift 𝜙 (−0.0210 ± 0.0009) 𝜋
constant 𝑐 (0.7708 ± 0.0005) V
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Figure 3.10: Visualized raw data from the fully balanced Detector Setup with a range of 0...10 MHz for the
spectrum analyzer instrument noise and different laser powers. The y-axis corresponds to the noise amplitude
given in dBm and the x-axis to the frequency given in MHz

but for hand adjusted mirrors they are sufficient enough to approximate the visibility as 1 in the later
calibration calculations.

3.3.2 Calibration of interference signals

As a next step we would like to identify one beam as the Probe beam and reduce its intensity to low
powers, so we will be using a 99:1 beam splitter instead of the 50:50 beam splitter. This is done to
keep as much laser power in the LO beam as possible. As the expected visibility and thus the RF
signal amplitude aren’t easy to estimate without prior calibration, I made a prediction model that
uses the input beam powers and the measured conversion of section 3.2 to calculate the maximum
possible visibility based on the measurements presented in section 3.3. Using the conversion factors to
convert incoming beam powers to measured voltages on the oscilloscope and formulas coming from
the visibility of a interferometer we can derive the amplitude and frequency of the expected visibility,
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Figure 3.11: Visualized data with removed dark noise from the fully unbalanced Detector Setup with a range of
0...10 MHz for different laser powers. The y-axis corresponds to the noise amplitude given in dBm and the
x-axis to the frequency given in MHz

starting from the incoming beam intensities 𝐼1 and 𝐼2 with respective frequencies 𝑓1 and 𝑓2:

𝐼max =
𝐼1 + 𝐼2

2
(1 + 2 ·

√︁
𝛼(1 − 𝛼)) (3.13)

𝐼min =
𝐼1 + 𝐼2

2
(1 − 2 ·

√︁
𝛼(1 − 𝛼)) (3.14)

𝛼 =
𝐼1

𝐼1 + 𝐼2
. (3.15)

From this the amplitude of the Monitor outputs can be calculated using

𝐴Mon = 𝐺conv𝑀𝑜𝑛
(
𝐼max − 𝐼min

)
(3.16)

and of the RF output as
𝐴RF = 𝐺conv𝑅𝐹

(
𝐼max − 𝐼min

)
. (3.17)

with the frequency
𝑓 = | 𝑓1 − 𝑓2 | (3.18)

With this I can fit a sinus of the form 𝑦 = 𝐴 sin ( 2𝜋𝑥
𝑓
), which corresponds to the maximum possible

visibility for any two given beam powers, see Figure 3.16.
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Figure 3.12: Shot noise in µW as calculated in section 3.2.1 plotted against laser power in mW for
0...150 MHz range with included theoretical lower shot noise limit.
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Figure 3.13: Shot noise in µW as calculated in section 3.2.1 plotted against laser power in mW for
0...10 MHz range with included theoretical lower shot noise limit.
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Figure 3.14: Beam profile taken with a camera over the length of the setup, with positions of AOM, BS, and
BPD given, where y describes the beam width and x describes the position in the setup.
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Figure 3.15: Interference fringes for the 50:50 interferometer setup as described in section 3.3 for both Monitor
+ and - outputs measured with an oscilloscope and their respective fit functions as 𝑦 = 𝐴 sin ( 𝑓 𝑥 + 𝜙) + 𝑐, used
as a merit for optimizing the mode matching
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Calculating laser powers I will use ND plates in order to attenuate the laser beam. As it becomes
increasingly difficult to measure the laser powers and the given attenuation of the plates is wavelength
dependent, I measured the resulting power after the attenuation and used this to calculate the OD
for 399 nm. I calculate the beam powers when using different ND filters with the calibration values

Table 3.4: Calibrated attenuation factors of a set of ND filters used for calculating the beam powers for a given
power input

Given OD Measured OD
0.5 (0.49 ± 0.01)
1 (1.04 ± 0.01)
2 (2.54 ± 0.01)
3 (3.90 ± 0.01)

enclosed in Table 3.4 using the expression:

𝐼at = 𝐼in ∗ 10−OD
. (3.19)

Creating visibility predictions I can now use the prediction model in addition with the calculated
laser powers to plot the prediction of the RF signal corresponding to the probe power for different
attenuation factors. One of the plots is seen in Figure 3.16, the rest of them are in section B.1. I use
the amplitude as a measure of quality for the mode matching.

3.4 Heading towards homodyning

With the previous steps taken I now replace the 50:50 with the 99:1 beam splitter to figure out how
much I can attenuate the probe beam before loosing the interference signal to it’s noise. Additionally I
check the phase stability of the entire setup.

3.4.1 Approaching the few-photon regime

We now aim to see what the lowest beam power is, which can still be distinguished. For this I use
the realigned setup with the 99:1 BS in addition with the ND plates. The taken data can be seen in
section B.2. Let us look at an example measurement, seen in Figure 3.17. This shows the visibility
when using a OD = 2.0 ND plate. The values for the fits are given in Table 3.5. From this I can
compare the amplitude of (0.178 ± 0.001) V to the prediction in Figure 3.16 and can see, that the
alignment is almost optimal as the measured value is very close to the expected maximum of 0.18 V.
Comparing the amplitudes given in Table 3.5 with their expected maximums in section B.1 we can see
that for lower laser powers, the measured amplitudes become smaller than the expected ones. Looking
at an example using a OD = 5.0 ND plate, seen in Figure 3.19 and Figure 3.18, we can see that the
measured value of (1.1 ± 0.1) mV is much smaller than the predicted 2 mV. This might be due on one
hand to the noise getting larger, and on the other hand to increasing the alignment difficulty.
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Figure 3.16: Visibility predictions of (63 ± 4) nW using the model explained in subsection 3.3.2, x is given in
arbitrary units. This figure shows the theoretical maximal visibility, which can be compared to the achieved
visibility in Figure 3.17
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Figure 3.17: Measured visibility with setup from section 3.4 and fit data in Table 3.5 for OD = 2 0, used to
calculate the Signal to Noise Ratio
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Table 3.5: Fit data for measured Probe beam attenuation in section B.2, where ND plates are used to reduce the
power of the Probe beam, using a detuning of 100 Hz to visualize the interference fringes

Attenuation Amplitude 𝐴 / V Frequency 𝜔 = 2𝜋𝐹 / a.u. Shift 𝜙 / a.u. Constant 𝑐 / V
OD ODmeas power
0 – (22 ± 1) 𝜇W 3.3448 ± 0.0009 632 866 ± 30 3.118 ± 0.001 −0.0771 ± 0.0006

0.5 (0.49 ± 0.01) (7.1 ± 0.4) 𝜇W 1.88615 ± 0.00033 629 956 ± 20 3.190 ± 0.001 −0.07633 ± 0.00023
1.0 (1.04 ± 0.01) (2.0 ± 0.2) 𝜇W 1.00608 ± 0.00011 622 401 ± 12 3.372 ± 0.001 −0.07372 ± 0.00008
1.5 (1.53 ± 0.02) (0.65 ± 0.04) 𝜇W 0.56888 ± 0.00007 635 692 ± 13 3.286 ± 0.001 −0.07574 ± 0.00005
2.0 (2.54 ± 0.01) (63 ± 4) nW 0.177695 ± 0.000017 633 157 ± 12 3.986 ± 0.001 −0.071707 ± 0.000013
2.5 (3.03 ± 0.02) (21 ± 2) nW 0.099213 ± 0.000014 627 137 ± 16 −0.176 ± 0.001 −0.071867 ± 0.000010
3.0 (3.90 ± 0.01) (2.8 ± 0.2) nW 0.038690 ± 0.000005 627 732 ± 16 1.857 ± 0.001 −0.004653 ± 0.000004
3.5 (4.39 ± 0.02) (0.90 ± 0.05) nW 0.022010 ± 0.000005 624 458 ± 27 −1.075 ± 0.001 −0.004518 ± 0.000004
4.0 (4.94 ± 0.02) (0.25 ± 0.02) nW 0.012367 ± 0.000005 626 090 ± 50 1.639 ± 0.001 −0.0047546 ± 0.0000034
4.5 (5.43 ± 0.02) (82 ± 5) pW 0.005497 ± 0.000004 627 170 ± 80 0.778 ± 0.002 −0.0040399 ± 0.0000028
5.0 (6.44 ± 0.02) (8.0 ± 0.5) pW 0.0010749 ± 0.0000028 628 550 ± 300 0.142 ± 0.005 −0.0038723 ± 0.0000020
5.5 (6.93 ± 0.02) (2.5 ± 0.2) pW 0.0005154 ± 0.0000024 617 700 ± 600 −0.372 ± 0.009 −0.0036352 ± 0.0000017
6.0 (7.48 ± 0.02) (0.73 ± 0.05) pW 0.0002836 ± 0.0000023 627 000 ± 1 000 −0.855 ± 0.016 −0.0036283 ± 0.0000017
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Figure 3.18: Measured visibility with setup from section 3.4 and fit data in Table 3.5 for OD = 5.0, used to
calculate the Signal to Noise Ratio
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Figure 3.19: Visibility predictions of (63 ± 4) nW using the model explained in subsection 3.3.2, x is given in
arbitrary units. This figure shows the theoretical maximal visibility, which can be compared to the achieved
visibility in Figure 3.17

3.4.2 Detection limit in the few-photon regime

We want to be sensitive to single photons being emitted in microsecond intervals. For this we need to
see how low it is possible to attenuate the beam whilst still being able to distinguish signal and noise.
A merit for this is the Signal to Noise Ration (SNR), given by

SNR =

(
𝑃

RMS
signal

𝑃
RMS
noise

)
=

(
𝑈

RMS
signal

𝑈
RMS
noise

)2

. (3.20)

The lower this value, the longer we need to average to detect a signal. If the value drops below 1, the
signal becomes noise dominated. SNR values of Magnitude SNR ≥ 10 dB = 10 are considered to be
measurable, whilst lower values can be improved by averaging [12]. As we assumed the noise of the
signal to be dominated by the local oscillator noise, which is unchanged over the measurements, I took
a measurement with the probe beam blocked in order to estimate the noise for the measurements (see
Figure 3.20). The measured noise signal is𝑉RMS

noise = (0.59 ± 0.01) mV. Converting the amplitudes 𝐴

from Table 3.5 to VRMS
= 1√

2
V I calculate the SNR value for each laser power. As we are interested in

looking at the few-photon regime, I convert the laser power to Photons/µs using

Photons
µs

=
𝑊

ℎ 𝑓
(3.21)
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Figure 3.20: Noise measurement of the local oscillator at 3 mW

as this gives us a more intuitive understanding of how many photons are present at any given time.
With this I can plot the SNR as a function of the photon rate to see how the SNR behaves for decreasing
rates (see Figure 3.21). From the plot we can see that the signal is noise dominated at roughly
100 photons/µs. Using the fact that photons travel at the speed of light I can calculate, that there
are on average 0.33 photons in a meter of length, which, as the detector setup is only ≈ 0.95 m long,
already counts as few-photon levels. This shows great promise for the process of homodyning, as
even without any further improvements on this we can already detect signals at few-photon levels.
Furthermore it is possible to further improve these values, as will be discussed in chapter 4, allowing
us to reach even lower photon rates and therefore greatly reduces the amount of averages needed to be
taken for further measurements.

3.4.3 Interferometer phase stability and passive phase scan

For the reconstruction of the quantum state we have two key phase requirements, one is short term
stability within 100 µs, as this is the scale at which the measurements will be taken, and the other is a
slow drift over the span of a few hours, with which the full 360 deg of the LO phase can be scanned.
For this I remove the detuning between the LO and Probe beam by driving both AOMs at 200 MHz
(see Figure 3.1), as this allows us to see the phase drift of the interferometer. I first measure over a time
frame of 4 000 s (see Figure 3.22). We can see that there are two timescales of phase drift, one over
short duration and one over long duration. The long duration shift repeats over a time of (1 050± 50) s.
This allows us to passively scan the phase instead of needing to actively scan using the AOMs. One
essential thing that still needs to be checked is the phase drift over the short measurement periods. It
is of key importance that the phase over short measurement periods is stable enough. Should this not
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Figure 3.21: SNR for different photon rates. Lower values for the SNR will lead to more measurements, as the
data points need to be averaged more. For values close to SNR = 1 we are already in the few-photon regime.

be the case, steps need to be taken in order to stabilize the perturbations which cause the short scale
phase drifts. If the phase is stable over 100 µs it is possible to take measurements for specific phases
and thus, using the passive phase drift over long periods, it is possible to scan the entire phase of the
Local Oscillator.
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Figure 3.22: Phase drift of the Interferometer without detuning of Local Oscillator and Probe beam, measured
over a time frame of 4 000 s. There are two visible drifts, one over short duration’s which corresponds to the
broadening of the signal, and the drift over long duration’s, which shows that it is possible to scan the full phase
of the Local Oscillator
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CHAPTER 4

Conclusion and Outlook

We wanted to show that it is possible to create a homodyne detector for 399 nm laser light. For
this I first characterized a balanced photo diode by comparing measured conversion gains for the
direct PD monitor outputs and the subtracted RF Output in Table 3.2, to see that there are some
small deviations from the specifications, which reduce the total amplification of the RF Output. I
also calculated that the quantum efficiency of the photo detector lies at 46.6 %, which is drastically
lower than for the infrared with 80.2 %. I calculated the shot noise of the checked noise spectra to
verify that we are shot noise limited for the used local oscillator power of up to 2 mW. Using a 50:50
beamsplitter and a detuning of 100 MHz between the Probe and LO beam I achieved a visibility of
(99.7 ± 0.1) % for the interferometer, which I then used to create a prediction model to assist with the
alignment of the interferometer for low probe beam powers. Moving to the 99:1 beam splitter I used
ND-plates to attenuate the probe beam to low powers and found, that the limit at which the signal
could still be distinguished from the noise lies at 100 Photons/µs for the used setup. Lastly, I took
a long measurement without the detuning over 1.25 h to see that it is possible to passively scan the
phase of the local oscillator. One last measurement that still needs to be taken is the phase stability
for time frames of a few hundred microseconds, as this is the time window where the measurements
leading to state reconstruction will be taken.

4.1 Resolvable photon flux

Using the created prediction model to align the interferometer and ND plates to attenuate the beam
I could measure signals down to 100 Photons/µs, at which point the noise becomes dominant over
the signal. Considering the length of the interferometer,this corresponds to the few-photon regime.
This already provides the possibility to take measurements in the few-photon regime. Improving the
Signal to Noise Ratio would allow us to reduce the needed measurements, as less averages would be
required to get an equal or better SNR. A limiting factor for the resolvable signal level in my setup is
the utilized oscilloscope which cannot resolve signals lower than 0.1 mV. Using a measuring device
that can resolve lower signals would allow us to achieve an even smaller photon flux. Alternatively
a different detector with a higher amplification and better noise performance could be used. As we
only use frequencies up to 10 MHz for the calculations, a low-pass filter to cut out higher frequency
noise can be used to reach even lower Probe beam powers. In addition, to reduce the noise coming
from the detector, the setup can be properly isolated from it’s surroundings to reduce the impact
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of outside noise, like stray light which introduces white noise, air currents which slightly shift the
refraction index of the air, temperature changes or mechanical vibrations which vary the lengths of the
interferometer arms, etc.

Quantum Efficiencies The quantum efficiency of the detector itself lies at 46.6 % for 399 nm laser
light. This can largely be seen in the form of reflected light coming off of the detector itself. In
comparison to the efficiency at 820 nm of 𝑄𝐸 (820 nm) = 80.2 %, this is rather low. We are interested
in increasing this efficiency, as this would mean that when using single photon sources we would loose
more than half of all incoming photons at the detector, and thus requires more time for measurements.
One way of increasing it is by refocusing the reflected light back onto the detector, which could
increase the quantum efficiency by an additional fraction of the quantum efficiency. A simpler solution
would be to use specific photo diodes for blue laser light, which intrinsically come with a higher
quantum efficiency at the used wavelength.

Homodyne detection at 399 nm From the results of this thesis we can see that it is possible to
measure signals in the few-photon regime. The phase of the setup also drifts enough with time that it
allows us to passively scan the different phases. One last thing which is needed to be checked is if the
phase stability over 100 µs is stable. If this is the case it would allow us to perform homodyne detection
for the blue. Therefore the next steps towards the reconstruction of wigner functions and density
matrices can be taken. For this, a data acquisition method should be implemented, because when
heading for the total state reconstruction we require a lot of measurements. These consist of short
duration measurements in the region of a hundred microseconds. Each measurement corresponds to a
single point of data for a specific phase of the local oscillator. This should be repeated a few thousand
times in order to get a properly averaged result for one phase. This then also needs to be repeated
for multiple different phases of the local oscillator. It is therefore required to setup automated data
acquisition methods. We plan on using a Data Acquisition Card1 for this process.

After setting up the data acquisition the data needs to be fed into an algorithm, the Maximum
likelihood estimation algorithm, which is described by A. I. Lvovsky [13]. This needs to be programmed
and test, as it is needed to recreate Wigner and Density functions. Finally, with a working algorithm
these can be recreated. This should be done first for vacuum and coherent states to see if it is possible
to recreate the expected results. If the expected results are verified, the setup can be implemented into
the YQO Experiment. As the experimental setup itself runs on specific timings and pulsed lasers, the
timings of data acquisition need to be matched with the timings of the setup itself.

Finally it needs to be figured out if the setup is to be run by locking the interferometer and manually
setting a phase, e.g. using EOMs, or by scanning passively and additionally measuring the phase for
each data point. Locking the interferometer would give us control of measuring specific phases [9],
but is rather complex to implement and requires at least an additional EOM and laser. On the other
hand the passive scanning of the phase requires an additional simultaneous measurement to determine
the phase of the measured data point.

1 Series/Model : RazorMax / CompuScope Express 16502
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APPENDIX A

Measuring using Oscilloscope and Spectrum
Analyzer

Two devices used to take and visualize data are the spectrum analyzer (DSA7051) and the oscilloscope
(MDO30242). These devices have certain properties and we use them in specific ways.

A.1 Spectrum Analyzer

We use the spectrum analyzer to take data in the frequency regime, for this we use two different
settings for the ranges 0...150 MHz and 0...10 MHz . The relevant settings are resolution bandwidth,
video-resolution (V/R) ratio, detection type, filter type, sweep time and trace type. We set the V/R-ratio
to 0.1 as is specified by the manufacturer for noise measurements. The detection type is set to RMS
AVG, and filter type “Gause”. For the sweep time we use the “auto accy” option for higher precision
measurements and the trace type “power avg”. For 0...10 MHz we use a resolution band width of
10 kHz and for 0...150 MHz we use 30 kHz

A.1.1 Data processing with the Spectrum Analyzer

As we wish to further process the measured data we need to know how the data is taken. The taken
data is given in dBm instead of dBm/Hz, as the analyzer integrates over the bin width for each data
point. In order to integrate over a relevant part of the spectrum we first need to transform our data back
to dBm/Hz. We do this by dividing the data by the resolution bandwidth. Now in order to properly
integrate over the range, we convert dBm/Hz to W/Hz and multiply by the bin width to get an area
which we can then integrate up to the point of our choosing to get a single noise power value for the
entire spectrum.

1 URL: https://www.batronix.com/shop/spectrum-analyzer/Rigol-DSA705.html
2 URL: https://www.tek.com/en/products/oscilloscopes/mdo3000
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APPENDIX B

Attenuation of probe beam

B.1 Prediction plots

Here follow the plots for the prediction model.
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Figure B.1: Visibility predictions of (22 ± 1) 𝜇W using the model explained in subsection 3.3.2
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Figure B.2: Visibility predictions of (7.1 ± 0.4) 𝜇W using the model explained in subsection 3.3.2
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Figure B.3: Visibility predictions of (2.0 ± 0.2) 𝜇W using the model explained in subsection 3.3.2
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B.1 Prediction plots
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Figure B.4: Visibility predictions of (650 ± 40) nW using the model explained in subsection 3.3.2
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Figure B.5: Visibility predictions of (21 ± 2) nW using the model explained in subsection 3.3.2
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Figure B.6: Visibility predictions of (2.8 ± 0.2) nW using the model explained in subsection 3.3.2
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Figure B.7: Visibility predictions of (0.90 ± 0.06) nW using the model explained in subsection 3.3.2
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B.1 Prediction plots
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Figure B.8: Visibility predictions of (250 ± 20) pW using the model explained in subsection 3.3.2

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030
x

0.006

0.004

0.002

0.000

0.002

0.004

0.006

Am
pl

itu
de

 / 
V

Theoretical RF Output

Figure B.9: Visibility predictions of (82 ± 5) pW using the model explained in subsection 3.3.2
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Figure B.10: Visibility predictions of (2.6 ± 0.2) pW using the model explained in subsection 3.3.2
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Figure B.11: Visibility predictions of (0.73 ± 0.05) pW using the model explained in subsection 3.3.2
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B.2 Measured beam attenuation

B.2 Measured beam attenuation
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Figure B.12: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 0
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Figure B.13: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 0.5
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Figure B.14: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 1.0
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Figure B.15: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 1.5
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Figure B.16: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 2.5
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Figure B.17: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 3.0
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Figure B.18: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 3.5
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Figure B.19: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 4.0
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B.2 Measured beam attenuation
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Figure B.20: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 4.5
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Figure B.21: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 5.5
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Figure B.22: Measured visibility with setup from section 3.4 and fitdata in Table 3.5 for OD = 6.0
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