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CHAPTER 1

Introduction

Radio-frequency waveform generators are indispensable tools in experimental physics, providing research-
ers with the ability to create precise and programmable signals required for a wide range of applications.
These devices are essential in driving experimental setups, performing frequency sweeps, and modulating
signals in real-time. Despite their importance, commercially available solutions often come with signific-
ant drawbacks, including limited flexibility, high costs, and challenges in meeting specific experimental
requirements. This has motivated the development of custom-built solutions tailored to the unique needs
of advanced physics experiments.

In this thesis, a custom waveform generator is designed and implemented by controlling a commercial
Direct Digital Synthesizer (DDS) board. The DDS board operates at high speeds, allowing for the
generation of almost arbitrary waveforms. Control of the DDS board is achieved through the use of a
Field-Programmable Gate Array (FPGA), which is programmed specifically for this purpose. FPGAs
offer distinct advantages in such applications, as they can reliably perform simple tasks at extremely high
speeds and are capable of handling complex timing and control requirements.

The device developed in this thesis is designed to serve as a versatile waveform generator, with its primary
use case being in the Ytterbium experiment conducted by the Nonlinear Quantum Optics (NQO) research
group at the University of Bonn. In this experiment, the radio frequency output of the FPGA-controlled
DDS system is intended to drive an Acousto-Optical Modulator (AOM), which is used to broaden the
frequency of a laser. This frequency-broadened laser is a critical component for laser-cooling 174Yb atoms
in a Magneto-Optical Trap (MOT)[1], a fundamental step in preparing atoms for Rydberg experiments.

An FPGA-DDS-based solution is already in use within the Ytterbium experiment [2]. However, the current
setup has limited functionality and lacks proper documentation, making it less reliable and harder to
maintain or adapt for future needs. Despite these limitations, the existing system has enabled the successful
trapping and laser cooling of Ytterbium atoms [3]. The success of this existing setup demonstrates the
potential of using an FPGA-controlled DDS system in high-precision experimental scenarios.

This thesis begins by outlining the theoretical principles underlying FPGAs and DDS boards, providing
the foundational knowledge necessary to understand the system’s design. The main focus lies on the
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Chapter 1 Introduction

programming and implementation of the FPGA, detailing the methods and challenges involved in achieving
precise control of the DDS board. The final section of the thesis discusses how specific signals can be
reproduced, demonstrating its practical applications and flexibility for implementation in advanced physics
experiments.
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CHAPTER 2

Theory

As mentioned in the Introduction, the goal of this project is to build a waveform generator by controlling
a DDS board using a custom programmed FPGA. This chapter provides a theoretical foundation for the
project, detailing the operation of the AD9959 DDS board and its modes of operation. Additionally, it
introduces the fundamental principles of FPGA architecture and programming, including an overview of
Verilog, the hardware description language used in this project.

2.1 The AD9959 DDS Board

A Direct Digital Synthesizer (DDS) is a device that synthesizes an analog waveform with specified
characteristics using a digital input clock and wave sample.

The core component of a Direct Digital Synthesizer (DDS) is an addressable memory, such as a Read-Only
Memory (ROM), connected to a Digital-to-Analog Converter (DAC). This memory stores the waveform
samples that the DDS reproduces, providing a Look-Up Table (LUT) for waveform generation. The
phase accumulator is responsible for maintaining a digital representation of the signal’s phase, which is
incremented at a rate determined by the Frequency Tuning Word (FTW) stored in a dedicated register.
The FTW controls the step size of the phase accumulator, thereby setting the output frequency.

The reference clock governs the rate at which the phase is incremented, ensuring a stable and precise
output. By adding a constant value to the phase, the DDS can achieve phase modulation. The phase output
is then mapped to the amplitude of the waveform via the LUT, which is subsequently converted into an
analog signal by the DAC.

Figure 2.1 illustrates a block diagram of a DDS, showing the flow from the Frequency Tuning Word to the
generation of a continuous sinusoidal waveform.

In this project, the AD9959 on the evaluation board Z by Analog Devices is used. It features 4 channels
and can be interfaced via several Input/Output pins. The clock signal for the DDS must be provided
externally. To write to a register, such as the FTW or the POW (Phase Offset Word), an instruction byte
must be sent via the Serial Peripheral Interface (SPI) to the DDS board, followed by the value to be written
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Chapter 2 Theory

to that register. All the registers and their instruction bytes are detailed in the AD9959 datasheet [4].

There are five pins for SPI communication: one SCLK (clock) pin and four Secure Digital Input/Output
(SDIO) pins. This allows for single, dual, or quad SPI communication, depending on the board settings.
The maximum SCLK speed is 200 MHz, resulting in a maximum communication speed of 800 Mbit/s
when quad SPI is used. To apply newly configured registers, a digital high signal must be sent through the
io_update pin on the DDS board, transferring the values from the buffer to the registers. In addition to
these pins, there is a reset pin that resets all registers to their default values when set to a logical high.

The AD9959 can internally upscale the external reference clock to the system clock frequency fS using a
Phase-Locked Loop (PLL). The scaling factor is set in Function Register 1 (FR1) and can range from
4 to 20; any value lower than 4 results in no upscaling. The resulting system clock frequency is the
externally provided reference frequency fREF multiplied by the PLL factor. In addition to the system
clock, the AD9959 also features a synchronization clock (SYNC_CLK), which is one-fourth of the system
clock frequency. When sending an io_update signal, the pulse width has to be longer than one SYNC_CLK
period to guarantee signal detection.

Figure 2.1: Block diagram of a Direct Digital Synthesizer (DDS). The Frequency Tuning Word (FTW) sets the rate
at which the phase accumulator increments, controlling the frequency of the output signal. The phase accumulator
outputs digital phase values, which are mapped to waveform amplitudes via a Look-Up Table (LUT). These digital
amplitudes are then converted into an analog waveform by the Digital-to-Analog Converter (DAC). The reference

clock provides timing for the entire process.

Source: [2]

The board supports multiple operating modes, two of which are utilized in this project. These modes are
described in the following sections.

2.1.1 Single tone mode

In single tone mode the DDS board will output a sine wave with constant frequency, amplitude and phase.
The frequency can be set in the FTW and is proportional to the system clock frequency fS

fOUT =
(FTW) fS

232 .
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Chapter 2 Theory

The phase offset between the channels is set by the POW and is given by

ϕ =
(POW)

214 × 2π.

The full scale current of the DAC is given by

RSET =
18.91

IOUT(max)

where the resistance RSET on the Evaluation board Z is given by RSET = 1,91 kΩ [4][5].

Phase and frequency can be set individually for each of the four channels.

2.1.2 Linear Sweep Mode

For applications such as frequency broadening, the linear sweep function of the AD9959 is highly useful.
This feature allows for ramping frequency, phase, or amplitude in a linear manner. To achieve this,
multiple registers must be configured. First, linear sweep mode must be enabled by setting a bit in the
Channel Function Register (CFR) to logic high. Additionally, the parameter to be swept must be specified
in the same register. Figure 2.2 shows the parameters that need to be set to perform a sweep. The lower
boundary, S 0, is stored in the standard register for the parameter being swept (e.g., for frequency, this
would be the Frequency Tuning Word or (FTW). The upper boundary, E0, must be set in Channel Word 1
(CW1).

The slope of the sweep is determined by two values. The Rising/Falling Slope Ramp Rate (RSRR/FSRR)
defines the time resolution for the rising or falling sweep. The Rising/Falling Delta Word (RDW/FDW)
specifies the step size. The profile pins are used to switch between a rising or falling sweep. A logic high
on a profile pin indicates a rising sweep, while a logic low indicates a falling sweep for the corresponding
channel. There is one profile pin for each of the channels. This allows for individual configuration of
sweeps for all channels.

The formulas to compute the frequency, phase, amplitude and time steps are given by [4]

∆ f =
(RDW) fS

232

∆ϕ =
(RDW)

214 × 2π

∆a =
(RDW)

210 × 1024

∆t =
(RSRR)

SYNC_CLK
.

2.2 FPGA theory

This section discusses the fundamental building blocks of an FPGA and explains how they can be
programmed. It also provides a brief introduction to the hardware description language Verilog.
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Chapter 2 Theory

Figure 2.2: Schematic plot of frequency, amplitude, or phase over time in the linear sweep mode of the AD9959.
The upper and lower limits are defined by E0 and S 0. The rising slope of the sweep is determined by the RDW and
RSRR, while the falling slope is determined by the FDW and FSRR. The state of the profile pin determines whether

a rising or falling sweep is executed.

Source: [4]

2.2.1 Synthesis of Logical Circuits

Field Programmable Gate Arrays (FPGAs) consist of Configurable Logic Blocks (CLBs) that can be
interconnected through routing channels and switch matrices, similar to regular gate arrays. However,
unlike regular gate arrays, which are configured during manufacturing, FPGAs can be reconfigured
through programming. This configuration allows the logic blocks and switch matrices to be arranged
in any desired manner, enabling the creation of complex logic circuits in ‘the field’—hence the name.
Unlike microcontrollers, where software configurations are primarily adjusted, FPGAs allow for the
reconfiguration of the hardware itself. In microcontrollers, different processes may compete for computing
resources, potentially leading to bottlenecks. In contrast, FPGAs enable fully parallel logic circuits,
allowing multiple computations to be performed simultaneously.
The CLBs are interconnected through routing channels. The Input/Output blocks (I/O blocks) can be
programmed as unidirectional or bidirectional interfaces between the FPGA and external devices. A
schematic of such an array is shown in Figure 2.3.

Figure 2.4 shows a CLB from the company Xilinx as an example. It consists of multiple Look-Up
Tables (LUTs), which are common for most FPGAs. The LUTs allow the realization of any binary
function by writing specific values in each table entry. The entries, and thus the function, of the LUT
can be configured by writing to memory such as Static Random Access Memory (SRAM) or Erasable
Programmable Read-Only Memory (EPROM). This makes FPGAs easily programmable by writing to
simple memory blocks. By using LUTs to realize the binary functions the propagation delay for every
possible function does not vary. The LUTs connect through multiple multiplexers to outputs and flip-flops.
These multiplexers can be configured to provide the desired signal path inside the CLB.

The CLBs are connected to the routing channels through configurable routing switches, as illustrated in
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Chapter 2 Theory

Figure 2.3: Schematic representation of an FPGA showing the arrangement of its components. The routing channels
connect to the switch matrices, which together guide the signals to the CLBs and the I/O blocks.

Figure 2.5. These routing switches are implemented using transistors, which can be configured similarly to
the CLBs by writing to memory, such as SRAM or EPROM. The horizontal and vertical routing channels
are linked by programmable switch matrices that use the same type of routing switches. This design
allows for highly flexible logic circuit design and signal routing.

The primary drawback of this architecture is that each programmable connection or routing through a
CLB introduces additional signal delay, potentially limiting the operational speed. To minimize this effect
on clock signals, most FPGAs feature low-impedance global clock lines that distribute the clock signal to
clock buffers located throughout the chip. These clock buffers then provide the clock signals to the CLBs
and other clocked elements, significantly reducing clock signal delays where timing is critical [7].

In some FPGAs, connections are created with anti-fuses, which form a permanent connection after a high
voltage is applied for a short period. While these connections tend to be more stable, they are irreversible
and thus not suitable for prototyping or flexible reprogramming [6, Chapter 14.3.3].

Since SRAM is a volatile memory, all programming is lost when the power is turned off. To address
this limitation, many FPGA boards include a programmable memory device, such as an EPROM, which
automatically loads the configured program from non-volatile memory into the SRAM upon power-up.

The configurable I/O blocks are used to send signals on and off the board. They consist of an input buffer
and an output buffer. The polarity of the output can be set to either active high or active low. Additionally,
there are flip-flops on both the input and output to reduce both delay and hold time requirements [7].

The FPGA used in this project is the Artix-7 35T on the CMOD A7 board. The board features 44 digital
I/O pins, a USB connector, and an onboard 512 kB SRAM with an access time of 8 ns [9].
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Figure 2.4: Block diagram of a Xilinx CLB. The look-up tables realize the desired logic and can be programmed.
The multiplexers route the signals throughout the CLB. The flip-flops enable the option to store the signals and can

be directly set and reset by the set/reset controller. The multiplexer controller contains the logic to controll the
multiplexers and set/reset controllers.

Adapted from [6, Figure 14.24]

Figure 2.5: Schematic of a Programmable Switch Matrix. The CLBs inputs and outputs are connected to the wiring
segment by routing switches that can be programmed by writing to a memory device. Each intersection of the

switch matrices can be configured and consist of six routing switches.

Source: [8, Figure 8]
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2.2.2 Introduction to Verilog

Manually configuring logic circuits on FPGAs can be very tedious. This is why FPGAs are typically
programmed using Hardware Description Languages (HDLs). The HDL code is then processed through
multiple steps to create a bitstream, which can be loaded onto the FPGA to realize the desired functionality.
The process of constructing a logic circuit from HDL code is known as synthesis.

In this project, the FPGA is programmed using the IEEE-standard hardware description language Verilog
[10]. This section will introduce basic Verilog syntax by showcasing a few examples. The examples
will display the Verilog code on the left and the synthesized circuit on the right. These circuits represent
only one possible way the logic might be synthesized, as the actual realization of the logic is highly
hardware-dependent.

In Verilog, the logic is divided into modules, which can be thought of as logic circuits. These modules
have inputs and outputs that are connected by the implemented logic. The code below demonstrates how a
simple AND gate can be realized.

1 module AND(
2 input wire A,
3 input wire B,
4 output wire C
5 );
6 assign C = A & B;
7 endmodule

&A
B C

The assign statement defines logic by driving the value on the left side of the statement with the
expression evaluated on the right side. The & operator performs a bitwise AND operation on the two
operands. This method of creating circuits works well for simple functions. However, when more complex
and synchronized logic is required, these continuous assignments may not be suitable. A better option is
to use always blocks. The example below demonstrates how such a block functions.

1 module AND(
2 input wire A,
3 input wire B,
4 input wire clk,
5 output wire C
6 );
7 reg r;
8 always @(posedge clk)begin
9 r <= A & B;

10 end
11

12 assign C=r;
13 endmodule

&

CLK Q

D Q

rA
B

clk

C

Both examples implement an AND gate. However, in the second example, the output is buffered into a
latch that updates only upon detection of a rising edge (posedge) of the clock (clk) signal. This enables
the design of synchronized circuits and sequential logic. The line reg r; declares a new 1-bit register.
Registers can be defined in any desired size. This register is connected to the output C using the line
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assign C = r;. In addition to the AND operator, Verilog provides many different logical and arithmetic
operators. A selection of these operators is listed in Table 1.

Conditional statements in Verilog can be used to realize logic based on a condition. An example of an if
statement is shown below.

1 module AND_OR(
2 input wire A[1:0],
3 input wire B[1:0],
4 input wire ctrl,
5 input wire clk,
6 output wire C[1:0]
7 );
8 reg r[0:1];
9 always @(posedge clk)begin

10 if(ctrl) begin
11 r <= A & B;
12 else begin
13 r <= A | B;
14 end
15 end
16

17 assign C=r;
18 endmodule

&

≥ 1

CLK Q

D Q

r[0]

&

≥ 1

CLK Q

D Q

r[1]

A

ctrl

B

clk

C[0]

C[1]

0

1

0

1

In this example, the inputs A and B are two bits wide. The notation A[1:0] refers to a two-bit wire,
where the index of the Most Significant Bit (MSB) — the bit in a binary number that encodes the highest
positional value — is 1. This essentially denotes in what order the bits are arranged in the register. This
indexing also applies to registers. If only a single bit or a range of bits needs to be accessed, this can
be done using the notation r[<index>] or r[<index1>:<index2>]. On the rising edge of the clock
signal, the register r stores the result of either a bitwise AND or OR operation, depending on the state of
ctrl. If the expression in the if block (in this case, ctrl) evaluates to true, the logic within that block is
executed; otherwise, the else block is executed.

Verilog offers a range of logical operators for constructing more complex expressions within if statements.
A selection of these operators is shown in Table 2.

The equivalent of the logic described above can also be achieved using conditional assign statements. For
example, the expression assign C = (ctrl) ? A & B : A | B; creates similar logic but operates
asynchronously, like the first example. Conditional assignments are useful when a wire or register needs
to be driven by multiple sources. One such example is an SRAM data bus that is driven externally when
in write mode, or by the SRAM itself when in read mode.

In addition to if statements, Verilog also provides case statements, which enable different logic to be
executed depending on the value of a given operand. An example of a case statement is shown below.
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1 module AND_OR(
2 input wire A[1:0],
3 input wire B[1:0],
4 input wire ctrl[1:0],
5 input wire clk,
6 output wire C[1:0]
7 );
8 reg r[0:1] ;
9 always @(posedge clk)begin

10 case(ctrl)
11 0: begin
12 r2 <= A & B:
13 end
14 1: begin
15 r2 <= A | B:
16 end
17 default: begin
18 r2 <= 0;
19 end
20 endcase
21 end
22 assign C=r;
23 endmodule

This example realizes nearly the same logic as the previous one. The major difference is that ctrl is now
a 2-bit wire, allowing it to represent four different states. In states zero and one, the logic behaves just like
the previous example. In any other state, r2 and thus C is set to zero. This behavior is achieved using the
default statement, which is executed when none of the specified cases match.

To improve code readability, parameters can be used. The expression parameter CONST = 7; creates
an alias for the number seven, named CONST. This does not affect the synthesized logic but is very useful
for complex logic circuits with many possible states. For example, consider the line if(state == IDLE)
begin. Defining the parameter IDLE once makes the code much more readable than having to remember
the numerical values representing each state [10].
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CHAPTER 3

Development

3.1 General Approach

The goal of this project is to program the FPGA to control the DDS board in a highly flexible manner. By
enabling fast and efficient writing to the DDS registers, the system aims to produce an almost arbitrary
function as the DDS output.

The general approach to achieving this goal is to configure the FPGA so that the user can write a sequence
of instructions into the onboard SRAM of the CMOD A7. These instructions include tasks such as ‘write
value x to DDS register a’ or ‘wait n clock cycles’. Once the writing process is complete, the instructions
are executed sequentially, mimicking the behavior of a microcontroller.

This allows for highly flexible control of the DDS and precise timing. The access time of the SRAM is
8 ns [11], which ensures that even at the maximum communication speed of 100 MB/s, the system has
sufficient time to read data from memory.

Since each cell of the SRAM is one byte in size, it is logical to design the instructions to also be one byte
long. As mentioned in Section 2.1, an instruction byte must be sent to the DDS, containing the address of
the register to be written to. A bit field diagram of the DDS instruction byte is shown in Figure 3.1. The
most significant bit (MSB), D7, determines whether the register should be written to or read from. A logic
low represents a write operation, while a logic high indicates a read operation. Bits D4 to D0 encode the
address of the register, while D6 and D5 don’t carry any information and are therefore don’t-care bits.

The instruction byte for the FPGA is constructed from the DDS instruction byte, which is illustrated in
Figure 3.2. In this design, only write operations are performed on the DDS, meaning that the MSB can be
used to encode something different. In this case, D7 is used to indicate whether an io_update signal should
be sent after the execution of the instruction. Since D6 and D5 are don’t-care bits of the DDS instruction
byte, all bits from D6 to D0 represent an instruction on the FPGA. The instructions are encoded in such a
way that if D6 and D5 are both logic low, the system will treat bits D6 to D0 as a write instruction for the
DDS and will output data accordingly. If either D6 or D5 is high, then D6 to D0 represent an internal
instruction such as ‘wait’.
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Figure 3.1: Bit field diagram of the instruction byte of the AD9959 DDS chip. The MSB at D7 indicates wether a
read or a write operation should be performed. D6 and D5 are don’t-care bits. Bits D4 to D0 encode the address of

the register.

adapted from [4]

Figure 3.2: Bit field diagram of the instruction byte of the FPGA. D7 encodes whether an io_update signal should
be sent after the execution of the instruction. D6 to D0 encode the instruction

This design allows for very efficient encoding of when to perform an io_update while still leaving enough
space for instructions. In total, there are 27 = 128 instructions, of which 25 = 32 are used as write
instructions for the DDS. This means that 96 internal instructions can be programmed.

Alongside the instruction itself, the parameters of the instruction must be stored in memory. This is
achieved by starting each sequence at address 0x00 with an instruction followed by the parameter. The
size of the instructions is, by design, one byte. However, the size of the parameter might vary. For
example, the FTW of the DDS has a size of 4 bytes, while the POW is only 2 bytes long. This means that
the system must know how many bytes each parameter consists of in order to be aware of when the next
instruction is expected.

An example program, which demonstrates how the planned system should function, is shown in Table 3.1.
The table outlines the addresses and contents of the first seven memory cells in the SRAM. The system is
designed to execute programs sequentially, starting at address zero and progressing downward.

Address Byte Description
0 10000100 Set FTW and io_update
1 00011001 FTW[31:24]
2 10011001 FTW[23:16]
3 10011001 FTW[15:8]
4 10011001 FTW[7:0]
5 00100111 Wait
6 00000101 time

Table 3.1: Memory table of example program. The first column holds the address of the memory. The second
column the content at that address. The description column comments, what information the byte represents.
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In this design, the first byte at address 0 is intended to be interpreted as an instruction. The value 10000100
stored in this byte specifies two actions. Bits 0–6 (0000100) are meant to instruct the system to write to
the Frequency Tuning Word (FTW) register of the DDS. Bit 7 (1) is planned to signal that an io_update
should be sent after the instruction is executed.

The subsequent bytes, located at addresses 1 through 4, are used to store the 4-byte FTW that will be
sent to the DDS. The system is designed to recognize that this parameter spans 4 bytes, and therefore, it
expects the next instruction to begin at address 5.

At address 5, the second instruction (00100111) is planned to represent a WAIT instruction. In this case,
bit 7 of the instruction is set to 0, indicating that no io_update should be sent after the instruction is
completed. Finally, the byte at address 6 (00000101) is meant to specify the number of clock cycles (5)
that the system should wait before resuming program execution.

The system is planned to support five different types of instructions, each serving a specific purpose:

1. Output:
Output instructions are used to write data to the registers of the DDS board, enabling configuration
of its operating parameters.

2. Wait:
Wait instructions pause the program execution for a specified number of clock cycles, allowing for
precise timing.

3. Synchronization:
Synchronization instructions halt the program until an external signal is detected, enabling syn-
chronization with external systems.

4. Address Manipulation:
Address manipulation instructions are designed to enable advanced program flow functionality,
such as jumps, loops, and callable functions.

5. Pin Control:
Pin control instructions allow the system to set or toggle external FPGA pins. These are primarily
intended to control the profile pins of the DDS, which are necessary for performing linear sweeps.

When used efficiently, this set of instructions allows the user to create a wide variety of output RF
functions, ranging from simple waveforms to more complex modulation schemes. The modular design of
the instruction set ensures adaptability to different application scenarios.

The hardware setup used in this project is illustrated in Figure 3.3. The FPGA hardware is configured by
the computer, which communicates with the FPGA via a USB to General Purpose Input/Output (GPIO)
converter. Once configured, the FPGA serves as the interface between the computer and the Direct Digital
Synthesizer (DDS). It provides the reference clock for the DDS, writes to its registers using Quad SPI,
and manages the necessary control signals. Based on these inputs, the DDS generates the desired RF
signal, which can be observed at its output.

An image of the prototype implementation of the setup is shown in Figure 3.4. The figure illustrates
the connections between the various boards and the power distribution circuit, which is powered by a
laboratory power supply. The USB to GPIO converter used in this project, is the FT232H. The reference
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Figure 3.3: Flowchart of the hardware setup used in this project. The figure illustrates the interaction between the
computer, FPGA, and DDS. The computer provides the hardware configuration of the FPGA. It also sends data and

signals to the FPGA via a USB-to-GPIO converter, enabling the FPGA to act as an intermediary. The FPGA
provides the reference clock, control signals, and Quad SPI commands to the DDS, which subsequently generates

the desired RF signal at its output. The arrows in the diagram represent the flow of signals and data between
components.

clock and analog power for the DDS are supplied via SubMiniature version A (SMA) cables, ensuring
signal integrity. The FPGA is connected to the DDS pins using a single ribbon cable, while the digital
power supply for the DDS is delivered through the green connector visible in the figure.

To limit current on the control pins, resistors have been added to all active lines. Additionally, an
SMA connector has been soldered to relay the trigger signal from the FPGA to other devices such as
oscilloscopes.
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Figure 3.4: Prototype implementation of the FPGA-controlled DDS setup, highlighting the connections, power
distribution, and additional features for signal routing and protection.

3.2 Implementation

This section explains how the functionality outlined in the previous section is implemented. It provides an
overview of the Verilog modules specifically for this system , their individual roles, and how they interact
to achieve the desired system behavior.

3.2.1 Writing process

To generate RF signals, a program must first be created on a computer and written to the SRAM of the
CMOD A7 FPGA board. This subsection focuses on the implementation of the logic that processes the
inputs and writes the data sent from the computer into the FPGA’s SRAM.

A block diagram of the synthesized circuit that processes the inputs is shown in Figure 3.5. The program,
transmitted through the USB-to-GPIO converter, is sent via SPI. The input_spi module is responsible
for reading the SPI data. It receives the external clock signal on the sclk input and the data on the sdio
input. The Verilog code for this module is presented in Listing 3.2.

The index register tracks which bit of the word register will be written to next. Whenever a rising edge
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of the sclk signal is detected, the module writes the value of sdio into the word register at the index.
The index register is then decremented by one. When the index reaches zero, the output is updated, and
DVLD is set to logic high. Since the index register is only three bit in size, decrementing it when its value
is zero causes an overflow and resets it back to seven. When sending data, it is important to ensure that
the transmission starts with the Most Significant Bit (MSB) first. If a rising edge of the reset signal is
detected, all registers are reset.

The sram_controller handles the inputs and outputs of the FPGA that are connected to the SRAM chip
on the CMOD A7 board. When we is enabled, it takes data_in and writes it to the RAM cell located
at address_in on a rising edge of the clock. When we is low, it accesses the cell at address_in and
outputs it to data_out.

Before a byte can be written to the SRAM, the write enable input (we) must be set to logic high via an
external input. This will cause the system to enter the WRITE state, indicated by a blue status LED. While
we is high, the sram_controller writes the data from the input_spi to the current address whenever a
rising edge of the DVLD signal occurs.

The input_controller manages the address when the system is in WRITE mode. After each rising
edge of DVLD, it increments the input address by one. This means that the RAM is filled byte by byte,
starting from address 0x00, which matches the order in which the program will be read later.

The address and clock input of the SRAM must be driven differently, depending on the value of we.
As mentioned earlier, when we is high, the address is driven by the input_controller, and the clock
is driven by the DVLD signal of the input_spi module. When we is low, the address is driven by the
data_loader module, which reads the program from the SRAM, (see 3.2.2) , and the clock is driven
by the system clock. This behavior is achieved through conditional assignment, as shown in the code in
Listing 3.1.

1 assign ram_clk = (we) ? dvld_from_input : clk_1;
2 assign address_bus = (we) ? input_address : output_address;

Listing 3.1: Conditional assignment for the sram_controller inputs in top.v. The address bus and clock signal
are conditionally driven based on the value of the we signal. When we is high, the input_controller and
dvld_from_input signals are used to drive the address and clock, respectively. Otherwise, the data_loader

module and system clock take control.

During synthesis, this logic will behave like multiplexers (see Figure 3.5).
The writing speed of this setup is limited by the 8 ns access time of the SRAM [11]. This results in a
maximum writing speed of 125 MB/s which means that the full SRAM could be written to in less than
5 ms.

Most of the modules featured in this and following sections have a reset input that will reset the module
by resetting all registers to their default values, when a logic high is detected.
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Figure 3.5: Block diagram of the synthesized circuit that processes the inputs and writes the data into the FPGA’s
SRAM. The program, transmitted via SPI, is read by the input_spi module and written to SRAM through the
sram_controller. The diagram illustrates the role of the input_controller in managing the address during
WRITE mode and the use of conditional assignment for addressing and clock inputs based on the state of the we

signal.
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1 module input_spi_8bit(
2 input sclk, //external sclk
3 input sdio, //external data (MOSI)
4 input reset, //external reset
5 output [7:0] DATA, //data output
6 output DVLD //data valid flag
7 );
8 //INITIALIZE REGISTERS
9 reg [2:0] index = 7;

10 reg [7:0] data = 0;
11 reg [7:0] word =0;
12 reg finished=0;
13 reg dvld=0;
14

15 //ASSIGNEMENTS
16 assign DATA = data;
17 assign DVLD=dvld;
18

19 //ALways Block on posedge of external sclk
20 always @(posedge sclk or posedge reset) begin
21

22 if(reset) begin //reset
23 index=7;
24 data =0;
25 word=0;
26 end else begin
27 word[index] = sdio; //read current bit
28

29 if(index==0) begin //when byte is complete output
30 data = word;
31 end
32 dvld=(index==0); //data valid signal
33 index <= index - 1; //decrement index
34 end
35 end
36 endmodule

Listing 3.2: Implementation of the input_spi_8bit module in Verilog. This module reads 8-bit data transmitted
via SPI and outputs it alongside a data valid (DVLD) flag. The sclk signal drives the bit-by-bit reading of the SPI
input (sdio), which is stored in a word register. Once a full byte is received, the DATA output is updated, and DVLD

is set to logic high. The reset signal clears all internal registers, ensuring proper initialization.
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3.2.2 Program execution

This section demonstrates how the program execution described in Section 3.1 is implemented by detailing
the Verilog modules involved.

To execute the programs, multiple Verilog modules must work together. A diagram illustrating the
modules and their dependencies is shown in Figure 3.6. The modules are represented as boxes, with small
arrows indicating single-bit control signals driven by the module where the arrow originates. Buses are
represented by larger arrows, which are also driven by their source modules. The I/O block represents the
inputs and outputs of the FPGA.

For proper timing, multiple clock signals with different frequencies and relative phases are required. These
clocks are generated by an Intellectual Property (IP) block called the ‘Clock Wizard’, a module provided
by the Vivado Design Suite from AMD. The module is customizable and takes the built-in 12 MHz clock
from the FPGA chip as an input. The Clock Wizard then upscales and shifts the clock to the desired
frequencies and phases. All the clocks used in this project are listed in Table 3.2. The Clock Wizard IP
block is located at the top of the diagram.

Name Frequency /MHz Phase / degrees Description
clk_1 100 0 Data clock for quad SPI communication

and reference clock for DDS.
clk_1_200dg 100 200 sclk for quad SPI communication.
clk_3 50 0 Main system clock.
clk_4 5 0 Data clock for single SPI communication.
clk_5 5 90 sclk for single SPI communication.
clk_6 50 90 90◦ delayed main system clock.

Table 3.2: Clock wizard configuration table. The table contains the names, frequencies, phases, and a short
description of the clock signals provided by the clock wizard IP.
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Figure 3.6: Diagram illustrating the Verilog modules and their interdependencies for executing programs on the
FPGA. Each module is represented as a box, with single-bit control signals indicated by small arrows and multi-bit
buses shown as larger arrows. The state_controller manages the state of the system and drives the state_bus,

while the data_loader serves as the central module, interfacing with other components such as the timer,
Instruction_len_Lut, and Sram_ctrl. The I/O block at the bottom represents the FPGA’s inputs and outputs,

including the clock and reset signals.
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The state_controller module drives an 8 bit register that represents the state of the entire system. The
state is determined by the reset, we, and instruction input signals of the module and is assigned to
the state output. This output is wired to the state_bus.

When the reset signal is set to logic high, all other logic is overridden, and the state is forced into RESET.
If the reset input is at logic low, the system will only transition to a new state if the initialized input
is also at logic high. When these conditions are met, the module checks the we input. If we is at logic high,
the state switches to WRITE. If we is at logic low, the state is set based on the value of the instruction
input.

The code snippet that implements this logic is shown in Listing 3.3.

1 if(reset) begin
2 state_register <= RESET;
3 end else begin
4 if(initialized) begin
5 if(we) begin
6 state_register <= WRITE;
7 end else begin
8 // Logic to set the state based on the instruction
9 case(instruction) // other instructions

10 32: begin
11 state_register <= WAIT;
12 end
13 //other cases
14 endcase
15 end
16 end
17 end

Listing 3.3: Implementation of the state_controller module, which determines the system state based on the
reset, we, instruction, and initialized signals. The logic prioritizes the reset signal to override all other
inputs, followed by transitions determined by the we and instruction inputs when the system not initialized.

The logic that determines the state based on the instruction input is implemented using a straightfor-
ward case(instruction) statement. This statement assigns a predefined state to each instruction. For
example, if the input instruction is a wait instruction, the state transitions to WAIT. All possible states of
the system are listed in Table 3.

As shown in Figure 3.6, the data_module module has the most dependencies. Its primary purpose is to
retrieve data from the SRAM controller and decode it. It also keeps track of the current program address,
which is stored in the 19-bit address register and drives the output_address output. A portion of the
code responsible for handling data reading and decoding in the data_loader module is shown in Listing
3.4.

When the module receives a read_next_byte signal, it reads a byte from the sram_controller, inter-
prets it and stores it in registers based on the states of several control signals. If the byte_is_instruction
signal is set to logic high, the byte just read is interpreted as an instruction. In this case, the module
decodes the byte into the instruction and the update_at_end flag. The instruction is stored in a 7 bit
register, which is directly assigned to the instruction_bus. If the byte_is_instruction flag is set
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to logic low, the data from the SRAM is accumulated in the 32 bit data register, which is assigned to the
data_bus. The data register is cleared whenever a new instruction is read.

Instructions that direct the system to write to a register on the DDS board include information specifying
the target register. If one of these instructions is read, the instruction byte is also stored in the data
register.

When both the is_instruction and update_at_end signals are high, no data is read from the SRAM.
Instead, the instruction is set to 127, which transitions the system into the UPDATE state.

The input_address_bus holds the address of the end of the program. If the current program address,
stored in the address register, exceeds the program’s end address, the instruction is set to 124, forcing
the system into the IDLE state.

Whenever a byte is read from the SRAM, the program address is subsequently updated. In most cases, it
is incremented by one. However, certain instructions, such as ‘jump’, manipulate the address in other
ways. The logic that controls the program address is discussed in Section 3.2.3.

1 // when read next byte flag is 1
2 if(read) begin
3 //check if program has endet
4 if(address >=input_address_bus) begin
5 instruction=124;// IDLE instuction
6 end else begin
7 // when byte is instuction and update_at_end flag is high override

instruction to IO_UPDATE
8 if(is_instruction && update_at_end) begin
9 instruction = 7’b1111111; //update instrucion

10 update_at_end <= 0; //reset update_at_end
11 end else begin
12 //if byte is instuction set new instruction
13 if(is_instruction) begin
14 data=0;
15 instruction = sram_data[6:0];
16 update_at_end = sram_data[7:7];
17 // if write to DDS instruction
18 if(sram_data[6:5]==0) begin
19 data[7:0] = (sram_data & 8’b01111111); //mask first bit
20 end
21 end else begin
22 data = data << 8; // shift data by 8
23 data[7:0] = sram_data;// add new byte
24 end
25 end
26 end
27 end

Listing 3.4: Logic implementation of the data_loader module, which reads and decodes bytes from the SRAM.
The listing demonstrates the handling of instructions, data accumulation in the 32 bit data register, and program

address management.
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The read_next_byte and byte_is_instruction signals are controlled by the timer module. These
signals are driven by the read and is_instruction registers. When reading data from the SRAM, the
timer module keeps the read_next_byte signal at logic high until a complete instruction, including
its parameters, is read. The lengths of the instructions are provided by the instruction_len_LUT
module. The timer module tracks the number of bytes read for the current instruction using the
instruction_len_counter register. When the end of the instruction is reached, the read_next_byte
and byte_is_instruction signals are set based on the system’s state.

This logic is implemented using a case(state) statement, a portion of which is shown in Listing 3.5.
When the state is WAIT, the duration for which the system should pause is stored in the data register of
the data_loader module, which drives the data_bus. The counter register tracks the number of clock
cycles that have elapsed since the last instruction was read. This counter increments by one with each
clock cycle and resets whenever a new instruction is read. If the counter exceeds the value provided
by the data_bus, the read register—and consequently the read_next_byte wire—is set to logic high,
allowing the program to continue.

1

2 case(state) // read next instruction based on state
3 WAIT: begin
4 read= counter >= data_bus;
5 end
6 UPDATE: begin
7 read= counter >= update_length;
8 end
9 WAIT_TRIGGER: begin

10 read=trigger;
11 end
12 WRITE: begin
13 read=~we && counter >10;
14 end
15 \\ more cases
16 endcase
17 is_instruction = read;

Listing 3.5: Snipped of the case statement within the timer module that governs the read register based on the
system’s current state. In the WAIT state, the program pauses for a duration specified by the data_bus, while in the
UPDATE state, the hold duration is fixed and determined by the update_length parameter. The WAIT_TRIGGER
state halts program execution until the trigger signal, an external input, is set to logic high. In the WRITE state,

program execution begins 10 clock cycles after we is set back to logic low. This case statement ensures
synchronization with external devices and accurate timing for program flow.

The same logic applies in the UPDATE state; however, in this case, the hold duration is fixed and determined
by the update_length parameter.

To synchronize with external devices, the system can be set to the WAIT_TRIGGER state using the
corresponding instruction. In this state, program execution pauses until the trigger signal is set to logic
high. The trigger signal is an external input to the FPGA. Additionally, some states cause the program
to wait until an edge of the trigger signal is detected.

As previously discussed, setting we to logic high causes the system to enter the WRITE state. When this
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occurs, the program address is reset to zero. In this state, program execution begins 10 clock cycles after
we is set back to logic low.

When the system is in the RESET state and the reset input returns to logic low, the system remains in
that state for a specific duration determined by a Verilog parameter called reset_length. Since the
reset signal also resets the DDS and its default communication protocol is single SPI, this time is used
to reconfigure the DDS to quad SPI. To enable quad SPI, a DDS register must be written via single SPI.
For this purpose, a single SPI module was implemented; however, it was omitted from Figure 3.6 for
simplicity.

Once this process is complete, the initialized output of the timer module is set back to logic high,
allowing the system to transition between states again.

The timer and data_loader modules are driven at the same clock speed but with different phases
(clk_3 and clk_6). The phase shift ensures that signals are sent in the correct order. At this clock speed,
the system takes one clock period, corresponding to 20 ns, to read a single byte. This must be considered
when writing a timing-critical program to the SRAM, as it determines how long the instructions take to
execute.

Both moudles reset when either of the reset or we inputs are set to logic high.

The module responsible for communication with the DDS is quad_output_spi_8bit. This module
outputs the byte from its data input, which is driven by the least significant byte of the data bus
(data_bus[7:0]), over quad SPI within two clock cycles. Transmission begins only when its start
input signal is set to logic high. This start signal is asserted whenever the system is in the OUTPUT
state. Any instruction that writes to a DDS register causes the system to transition to the OUTPUT state.
Additionally, the IO_UPDATE output is set to logic high whenever the system is in the UPDATE state.

The timing diagram in Figure 3.7 illustrates how the registers and signals evolve over time during the
execution of the example program shown in Table 3.1. The data was captured using an Integrated Logic
Analyzer (ILA), an IP block that records signals, registers, or buses over time, functioning similarly to an
onboard digital oscilloscope.

The diagram clearly shows that program execution begins at address 0, with the address incrementing
on the rising edge of the system clock (clk_3) whenever read_next_byte is set to logic high. It can
also be observed that the instruction_bus updates on the rising edge of the clock whenever both
read_next_byte and byte_is_instruction are high.

Furthermore, the diagram demonstrates that the system state transitions occur after the instruction is
updated. The program progresses through its states as expected, starting with the WRITE state, followed
by OUTPUT, UPDATE, and WAIT.

The diagram also highlights how data is accumulated in the data register, which drives the data_bus.
Although this feature is not utilized in this particular example, as the bytes are output one by one, it is
crucial for other instructions where the complete parameter must be provided at once.
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Figure 3.7: Timing diagram illustrating the evolution of registers and signals during the execution of the example
program from Table 3.1. Captured using an Integrated Logic Analyzer (ILA), the diagram shows how the
address_bus increments with the rising edge of clk_3 whenever read_next_byte is high. The
instruction_bus updates in sync with the rising clock edge when both read_next_byte and

byte_is_instruction are high. State transitions, visible on the state_bus, occur after instruction updates,
progressing through states like WRITE, OUTPUT, UPDATE, and WAIT. The diagram also highlights the role of the

data_bus, which accumulates data in the data register.
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3.2.3 Jumps, function calls and loops

The previous section discussed the general functioning of program execution. This section focuses on
how the address manipulation instructions, as well as the instructions that toggle the profile pins of the
DDS, are executed.

These instructions are directly handled within the data_loader module. Two separate case statements
are used: one for instructions that manipulate the address (Listing 3.7) and another for those that do not.
The case statements use the instruction_code register as their parameter. This register is updated
every clock cycle using the lines shown in Listing 3.6.

1 instruction_code[6:0]=instruction;
2 instruction_code[10:7]=instruction_counter_bus;

Listing 3.6: Implementation of the instruction_code register, which combines the current instruction and the
value from the instruction_counter_bus. This 11 bit register encodes both the instruction to be executed and
the current position in the reading process, enabling the data_loader module to handle instructions effectively.

The 11 bit instruction_code register contains both the instruction
and the value from the instruction_counter_bus. The instruction_counter_bus is assigned the
value of the instruction_len_counter from the timer module. This value represents the number of
bytes that have been read for the current instruction. Thus, the instruction_code encodes both the
instruction to be executed and the current position in the reading process.

This information is crucial for ensuring that the address is updated only after the full parameter of
the instruction has been read and before the next instruction is executed. The process of combin-
ing the two binary values to create the instruction_code is equivalent to shifting the value of the
instruction_counter_bus by seven bits and then adding it to the instruction. Consequently, the
value of the instruction_code can be computed using the following formula:

instruction_code = instruction_counter_bus · 128 + instruction.

When no instruction_code is detected, the address register is incremented by one. This behavior is
realized using the default statement.
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1 case(instruction_code)
2 //JUMP
3 418:begin
4 address <= data[18:0];
5 end
6 //END_LOOP
7 47: begin
8 if(loop_register != 0) begin
9 address <=loop_return_address;

10 loop_register <= loop_register -1;
11 end else begin
12 address <= address+1;
13 end
14 end
15 //CALL_FUNC
16 432: begin
17 func_return_address <= address+1;
18 address <= data[18:0];
19 end
20 //CALL_FUNC_FROM_BUFFER
21 56: begin
22 func_return_address <= address+1;
23 address <=func_address;
24 end
25 //END_FUNC
26 49: begin
27 address <=func_return_address;
28 end
29 default: begin
30 address <= address+1; // go to next address;
31 end
32 endcase

Listing 3.7: Implementation of the address manipulation logic within the data_loader module using a case
statement. The logic handles instructions such as JUMP, END_LOOP, CALL_FUNC, CALL_FUNC_FROM_BUFFER, and
END_FUNC. Each instruction modifies the address register based on the current instruction_code and

associated parameters, enabling complex program flow control.

The simplest instruction that changes the address is the JUMP instruction. This instruction takes a 3 byte
parameter containing the address to which the program should jump. The decimal value of the JUMP
instruction is 34. The address must be overwritten when the instruction_counter_bus holds the
value 3, which corresponds to an instruction_code of 418. When this code is detected, instead of
incrementing the address, the last 19 bits of the data register are written into the address register.

The END_LOOP instruction functions similarly to the JUMP instruction. When a END_LOOP instruction is
detected (instruction_code 47), the system jumps to the address stored in the loop_return_address
if the value in the loop_register is not equal to zero. If a jump occurs, the loop_register is decre-
mented by one. When the value in the loop_register is zero, no jump is performed. This functionality
allows for the implementation of do-while-like behavior by setting the loop_return_address and
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loop_register.

These and other internal FPGA registers can be set using designated instructions. Instructions that
write to FPGA registers are handled in the second case statement within the data_loader module,
parts of which are shown in Listing 3.8. The first case in the listing (instruction_code 555) handles the
LOAD_LOOP_REGISTER instruction. When the full parameter of this instruction is read, it is stored in the
loop_register. Other load register instructions are implemented in a similar manner.

As an alternative to setting both registers required for a LOOP instruction, the BEGIN_LOOP instruction
(instruction_code 558) can be used. This instruction takes the number of loops as a parameter and loads it
into the loop_register. The loop_return_address is automatically set to the succeeding address.

1 case(instruction_code)
2 \\LOAD_LOOP_REGISTER
3 555: begin
4 loop_register <= data;
5 end
6 \\ other load register instruction
7 \\BEGIN_LOOP
8 558: begin
9 loop_register <= data;

10 loop_return_address <= address+1;
11 end
12 \\LOOP_FROM_BUFFER
13 54: begin
14 loop_register <= loop_buffer;
15 loop_return_address <= address + 1 ;
16 end
17 //TOGGLE_P0
18 35: begin
19 profile_pin_register[0:0] =~profile_pin_register[0:0];
20 end
21 \\other toggle profile pin instructions
22 endcase

Listing 3.8: Implementation of the second case statement within the data_loader module, which handles
instructions for writing to internal FPGA registers. The listing includes examples such as LOAD_LOOP_REGISTER
(instruction_code 555), which sets the loop_register, and BEGIN_LOOP (instruction_code 558), which sets both
the loop_register and loop_return_address. Additional instructions, such as toggling the profile pin register,

are also demonstrated.

An example of how a loop can be implemented is shown in Table 3.3. The first instruction is BEGIN_LOOP,
with its parameter stored at addresses 1–4. The next instruction is a WAIT command, which pauses
the program for one clock cycle, followed by the END_LOOP instruction. Finally, an END instruction
terminates the program and sets the system to the IDLE state. The time evolution of the registers during
this program’s execution is shown in Figure 3.8. It can be clearly observed that the program first sets the
loop_register. Afterward, the WAIT instruction is executed, and the program address jumps back to
address 5, decrementing the value of the loop_register. This process repeats one more time until the
loop_register reaches zero. Once the loop_register is zero, the WAIT instruction is executed one
final time before the program terminates.
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Address Byte Description
0 0x2e Begin loop
1 0x00 loop_register[31:24]
2 0x00 loop_register[23:16]
3 0x00 loop_register[15:8]
4 0x02 loop_register[7:0]
5 0x32 Wait one clock cycle
6 0x2f End loop
7 0x7c END

Table 3.3: Memory layout of an example program implementing a loop. The program begins with the BEGIN_LOOP
instruction, followed by its parameter stored in the loop_register. The program executes a WAIT command,

loops back using the END_LOOP instruction, and concludes with an END instruction, which transitions the system to
the IDLE state.

Figure 3.8: Time evolution of registers during the execution of the example loop program. The figure illustrates how
the loop_register is initialized, decremented with each iteration, and how the program address loops back until
the loop_register reaches zero. The final iteration executes the WAIT instruction before program termination.

(Captured using an ILA)

The CALL_FUNC instruction (instruction_code 432) functions similarly to the JUMP instruction. However,
in addition to changing the program address, it also saves the succeeding address in the func_return_address
register. The END_FUNC instruction (instruction_code 49) causes the program to jump back to the address
stored in the func_return_address register. Together, these two instructions enable the user to call and
return from functions.

Since there is only one register that holds the return address, it is not possible to call a function from
within another function, as this would overwrite the return address. An example program demonstrating
the use of these instructions is shown in Table 3.4. In this example, the program calls a function located
at address 0x05. The function contains a single WAIT instruction, which is executed before the program
returns to the calling address.

The evolution of the registers involved during this process is shown in Figure 3.9. When the CALL_FUNC
instruction is executed, the func_return_address register is updated to store the address of the
next instruction (address 0x04). The program then jumps to the function address (0x05), as shown
on the address_bus. Within the function, the WAIT instruction is executed, as indicated on the
instruction_bus.

After the WAIT instruction, the END_FUNC instruction is executed. At this point, the system uses the value
in the func_return_address register to return to the calling address (0x04). The figure also shows the
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Address Byte Description
0 0x30 Call function at address 0x00005
1 0x00 address[23:16]
2 0x00 address[15:8]
3 0x05 address[7:0]
4 0x7c END
5 0x32 Wait one clock cycle
6 0x31 End function

Table 3.4: Memory layout of an example program demonstrating the CALL_FUNC and END_FUNC instructions. The
program begins by calling a function at address 0x00005. The function contains a WAIT instruction and concludes
with an END_FUNC instruction, returning control to the calling address. The program ends with an END instruction,

transitioning the system to the IDLE state.

transition of the state_bus back to the main program’s state after the function completes.

Figure 3.9: Time evolution of the registers during the execution of the example program using CALL_FUNC and
END_FUNC instructions. The figure shows the saving of the return address in the func_return_address register,
the execution of the WAIT instruction within the function, and the return to the calling address.(Captured using an

ILA)

As can be seen in Listing 3.7 there is a second instruction that does the same as the CALL_FUNC instruc-
tion with the difference, that it does not take a parameter but loads the address from a register called
func_address. This register can be written to with a designated instruction. This instruction is only
one byte in size. Thus when a function is meant to be called mansy times in a row, one only has to set
the func_address once. Doing this instead of passing the address as a paramater every function call,
heavily reduces the RAM usage and execution time. These versions of instruction also exist for WAIT and
BEGIN_LOOP that have version where they load the parameter from such a register.

As shown in Listing 3.7, there is a second instruction that functions similarly to the CALL_FUNC instruction
and is only one byte in size. The difference is that it does not take a parameter but instead loads the address
from a register called func_address. This register can be written to using a designated instruction.

When a function is intended to be called multiple times in succession, the func_address only needs to
be set once. Using this approach, instead of passing the address as a parameter with every function call,
significantly reduces both RAM usage and execution time. Similar versions of this instruction also exist
for WAIT and BEGIN_LOOP, where the parameters are loaded from dedicated registers.
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The final instructions to be mentioned are the TOGGLE_PROFILE_PIN instructions. These are handled in
the case statement shown in Listing 3.8. When one of these instructions is detected, it toggles a bit in the
profile_pin_register, which drives the profile pins. There are four such instructions, one for each
profile pin of the DDS.

The full instruction set of the developed system is listed in Table 4.
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CHAPTER 4

Reproduction of signal

This chapter demonstrates how the system developed in this thesis can be utilized to generate specific
waveforms. It begins by introducing a Python class that was implemented to facilitate the generation of
bytecode required for creating signals. This class simplifies the process by providing a more intuitive
interface for defining and customizing waveforms.

4.1 Editing and writing sequences in python

Writing a program for a specific RF signal can be approached in various ways, provided the bytecode is
correctly sent through the USB-to-GPIO adapter. However, writing instructions byte by byte manually is
both tedious and error-prone. This section introduces a Python class designed to simplify the creation of
such programs.

The Python class Sequence serves as a convenient tool for composing sequences that can be transmitted
to the FPGA. It was implemented as part of this project and is a user-friendly tool that does not require
extensive knowledge of the underlying system.

The class primarily manages an array called program, which contains byte arrays, each representing an
instruction along with its parameters. The methods load and save enable users to save programs to a
file or load existing ones. Additionally, the append_to_program method appends a byte string to the
program array while ensuring that the program size does not exceed the available memory capacity.

Functions such as set_FTW, disable_sweep_mode, and select_channels generate the correspond-
ing byte strings for each instruction. Parameters for functions that set a register corresponding to a
physical value, such as a frequency, must be provided in SI units. For example, a function call like
set_FTW(100e+6) appends a byte string to the program that, when executed, configures the FTW of the
DDS to the value corresponding to 100 MHz. Functions that compute hexadecimal values for phases,
frequencies, and amplitudes follow a naming convention of <type>_to_hex.

The class contains multiple fields that store the reference and system frequencies of the DDS, as well as
the clock period of the FPGA’s main clock. To ensure that the hexadecimal values for the various ructions
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are computed correctly, these fields must be initialized to match the FPGA’s clock settings.

Most functions also include an optional boolean parameter, update, which can be set to true if the
FPGA should issue an io_update after executing the instruction.

Debugging these programs in bytecode form is challenging. To address this, all functions that generate
byte strings are designed to detect potential errors and raise exceptions when issues are identified.

A significant advantage of using this Python class is its ability to minimize user errors. For instance,
writing an instruction to the FPGA with an incorrect byte length can lead to unpredictable system behavior.
Such errors, which are nearly impossible to detect manually, are effectively mitigated by the error handling
of the provided functions.

The print_program function outputs the bytecode to the console, displaying each instruction along with
its starting address and a brief comment explaining its purpose.

To upload a program to the FPGA, the Python class FPGA_DDS is provided. Creating an instance of
this class establishes a connection to the FT232H via USB. The class includes functions to send control
signals, such as the write_program function, which takes an instance of the Sequence class and writes
the corresponding program to the FPGA.

The following example demonstrates the use of the Python classes discussed. Listing 4.1 presents the
example Python code on the left and the resulting bytecode on the right in (Listing 4.2).
This program creates a function at address 0x04 that toggles the profile pin p0 ten times, with a fixed delay
between each toggle. The main program starts at address 0x11 and configures the DDS into linear sweep
mode after setting a single tone of 10 MHz. Following a rising edge of the trigger signal, the program
calls the function at address 0x04 with different values in FTW and CW1.The expected output signal
generated by this program is a frequency that sweeps five times between two specified frequency ranges
for two sets of upper and lower limits. The signal was measured with the MSO-X 2024A oscilloscope.

1 t=Sequence()
2 t.jump(17)
3 t.begin_loop(4)
4 t.toggle_profile_pin(0)
5 t.wait(5e-6)
6 t.toggle_profile_pin(0)
7 t.wait(5e-6)
8 t.end_loop()
9 t.end_func()

10 t.set_DDS_PLL(5, True)
11 t.set_FTW(10e+6, True)
12 t.enable_sweep_mode("frequency")
13 t.set_LSRR(8e-9, 8e-9)
14 t.set_FDW(16000 , "frequency")
15 t.set_RDW(16000, "frequency", )
16 t.set_CW_01(1, 20e+6, "frequency")
17 t.wait_trigger("posedge", True)
18 t.call_func(4)
19 t.set_FTW(20e+6)
20 t.set_CW_01(1, 30e+6, "frequency",True)
21 t.call_func(4)
22 t.end_programm()

Listing 4.1: Python test program to create an
example RF signal.

1 address: bytes | comment
2 0x00000: 22 00 00 11 | jump
3 0x00004: 2e 00 00 00 04 | begin loop
4 0x00009: 23 | toggle P0
5 0x0000a: 27 fa | short wait
6 0x0000c: 23 | toggle P0
7 0x0000d: 27 fa | short wait
8 0x0000f: 2f | end loop
9 0x00010: 31 | end func

10 0x00011: 81 94 00 00 | set FR1, io_update
11 0x00015: 84 05 1e b8 51 | set FTW, io_update
12 0x0001a: 03 80 43 00 | set CFR
13 0x0001e: 07 01 01 | set LSRR
14 0x00021: 09 00 02 18 de | set FDW
15 0x00026: 08 00 02 18 de | set RDW
16 0x0002b: 0a 0a 3d 70 a3 | set CW1
17 0x00030: a8 | wait on posedge trigger, io_update
18 0x00031: 30 00 00 04 | call func
19 0x00035: 04 0a 3d 70 a3 | set FTW
20 0x0003a: 8a 0f 5c 28 f5 | set CW1, io_update
21 0x0003f: 30 00 00 04 | call func
22 0x00043: 7c | END

Listing 4.2: Hexadecimal byte representation
of the test program.

To analyze the signal, a Hilbert transform was applied, which decomposes the signal into its instantaneous
phase and amplitude as functions of time [12]. To obtain the frequency as a function of time, the numerical
derivative of the phase was computed after applying a smoothing technique. The smoothing was achieved
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using a moving average, which effectively reduced the impact of noise present in the raw phase data. The
resulting frequency-over-time plot is presented in the lower half of the figure.

A plot of the raw signal can be observed in the appendix in Figure 1.

Figure 4.1: Hilbert transform analysis of the DDS signal generated by the test program. The upper plot shows the
instantaneous phase over time, derived using the Hilbert transform. The lower plot illustrates the frequency

evolution over time, obtained by calculating the numerical derivative of the smoothed phase data.

The graph shows the phase and the frequency over time, where t = 0 corresponds to the time of the
external trigger signal. The upper half of Figure 4.1 shows the phase of the resulting signal over time. The
signal resembles the ramps that sweep first from 1 MHz to 2 MHz for five repetitions before sweeping
between 2 MHz and 3 MHz for another five times. This example illustrates that with this waveform
generator that is programmed using the presented python class,it is possible to create complex waveforms
with little effort.
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4.2 Sawtooth for laser frequency broadening

One application considered during the design of the system was using the waveform generator as a driver
for an Acousto-Optical Modulator (AOM), to control the frequency of laser beams. Such application
would be implemented in the Ytterbium experiment conducted by the Nonlinear Quantum Optics (NQO)
research group at the University of Bonn. In this experiment a similar solution is already in place but with
limited functionality. This experiment utilizes a Magneto-Optical Trap (MOT) to cool and trap Ytterbium
atoms (174Yb), enabling the study of nonlinear quantum optics with Rydberg atoms .

In a MOT, the atoms are cooled using the principle of laser Doppler cooling [13]. Ytterbium possesses
two atomic transitions that are utilized for laser cooling, each offering distinct properties: a broad blue
transition with a large capture range and a narrow green transition with a low cooling limit, as illustrated
in Figure 4.2. In this Ytterbium experiment the operation of the MOT is divided into three distinct phases:
the blue MOT phase, the blue-green transfer phase, and the green MOT phase[3].

To bridge the very different regimes of the two MOTs and avoid atoms loss, the green MOT light is
frequency-broadened during the blue-green transfer phase. This broadening is achieved by modulating the
laser frequency using an AOM driven by an RF signal with sawtooth frequency sweeps. This section will
demonstrate how the signal required to drive the AOM is reproduced using the system implemented in
this project.

Figure 4.2: Atomic transitions used for laser cooling of 174Yb in the Ytterbium experiment. The broad blue
transition (λ399 = 398.9 nm) is used for initial cooling, while the narrow green transition (λ556 = 555.8 nm) is

employed in the final MOT phase.

Source: [3]

The required RF signal to broaden the laser is illustrated in Figure 4.3. The signal clearly exhibits three
distinct sections. Initially, the frequency remains constant at f0. Upon detection of an external trigger,
the frequency rapidly increases to a higher value and then sweeps downward in a sawtooth pattern. This
process repeats multiple times.

The sawtooth pattern is bounded by the lines AB and CD, with the period of the sawtooth denoted as ∆t.
After the sweeping phase completes and the endpoints of these lines are reached, the signal transitions
back to a single tone at the frequency f1.

Before a program for such frequency modulation can be created with the Sequence class, a Python
function must be implemented to compute the intersections between the sawtooths and the enveloping
lines, as well as the slopes of the individual sawtooths. This function, called old_sawtooth, is not further
discussed but is included in Listing 1 in the appendix.
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Figure 4.3: The RF signal required to broaden the laser, divided into three sections: an initial constant frequency
phase at f0, followed by a rapid increase in frequency triggered by an external signal, and subsequent downward

sweeps in a sawtooth pattern. The sawtooth is bounded by lines AB and CD with a period ∆t. After completing the
sweeping phase, the signal transitions to a single tone at frequency f1.

The function write_old_sawtooth, shown in Listing 4.3, takes the four points that define the enveloping
lines, the start and end frequencies (f0 and f1), and the sawtooth period dt. Additionally, it accepts a
parameter called step, which determines the number of sawtooth periods after which the limits and the
slope should be updated. Decreasing this value increases the time resolution of these parameters but also
increases memory usage. The implemented function is described in the following.

The function starts by instantiating a new Sequence object. The new sequence starts with a Jump
instruction that skips to address 23. At this address, the main program begins. It starts by setting the PLL
divider of the DDS to 5. Next, the FTW is set to f0 with the update flag set to true. This part of the code
realizes the first section of the signal to be reproduced.

For the second section, the DDS is configured into linear sweep mode. Subsequently, the sweep registers
are set. As explained in the Theory section 2.1.2, the slope of the linear sweeps is determined by two
parameters (see Figure 2.2). To simplify the computation of these registers and achieve maximum time
resolution, the time step ∆t of the linear sweep is kept constant at its minimum value.

The RDW is set close to its maximum value to approximate the vertical rise of the sawtooth frequency.
The FDW is calculated from the first entry of the slopes array. Afterward, the upper and lower sweep
boundaries are configured. Once all these settings are complete, the system waits until a rising edge of the
trigger signal is detected.

Note that no io_update signal has been sent yet. This ensures that the system remains in single-tone
mode, with all recent settings still held in the DDS buffer.

When a rising edge is detected, an io_update is performed, and the function at address 4 (immediately
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following the first JUMP instruction) is called. This function toggles the profile pin 0 of the DDS, causing
the frequency of the DDS to sweep to the upper limit almost instantaneously. Immediately afterward, the
pin is toggled again to initiate the downward sweep of the sawtooth.

To maintain the period of the sawtooth at dt, the system must wait for this duration. However, since the
execution of these instructions takes time, the execution time must be subtracted from the waiting period
to ensure precise timing. Figure 4.4 illustrates how the execution time must add up with the waiting time
to the period of one sawtooth. The diagram shows an example set of instructions that are executed in
during one sawtooth period.

Figure 4.4: Timing diagram illustrating the relationship between the execution time of instructions and the waiting
time required to maintain the period of the sawtooth at ∆t. The diagram shows an example set of instructions

executed during one sawtooth period, highlighting how precise timing is achieved by subtracting the execution time
from the waiting period.

Following this, a loop is created to repeat the process of toggling the profile pin and waiting between
toggles. After the loop, this process is executed one final time before the function returns.

AOnce the function returns to the calling address, sawtooth modulations of the frequency were performed
step times. The program then updates the upper and lower limits as well as the slope, and the function is
called again. This process is repeated for all values in the lower_points array.

Finally, the DDS is returned to single-tone mode, and the frequency is set to f1 before the program
terminates.
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1 def write_old_sawtooth(A, B, C, D, dt, f0, f1, step):
2 upper_points , lower_points , slopes = self.old_sawtooth(A, B, C, D, dt) # Compute

intersections and slopes
3 sawtooth = Sequence() # Instantiate Sequence
4 sawtooth.jump(23) # Jump to beginning of program
5
6 # Start of function
7 sawtooth.toggle_profile_pin(0) # Sweep up
8 sawtooth.toggle_profile_pin(0) # Sweep down
9 sawtooth.wait(dt - 7 * sawtooth.FPGA_clk_period) # Wait

10
11 sawtooth.begin_loop(step - 3) # Begin loop
12 sawtooth.toggle_profile_pin(0) # Sweep up
13 sawtooth.toggle_profile_pin(0) # Sweep down
14 sawtooth.wait(dt - 3 * sawtooth.FPGA_clk_period) # Wait
15 sawtooth.end_loop() # End loop
16
17 sawtooth.toggle_profile_pin(0) # Sweep up
18 sawtooth.toggle_profile_pin(0) # Sweep down
19 sawtooth.wait(dt - 25 * sawtooth.FPGA_clk_period) # Wait
20 sawtooth.end_func() # Return
21
22 # Main program start
23 sawtooth.set_DDS_PLL(5, True) # Set PLL to 5
24 sawtooth.set_FTW(f0, True) # Set FTW, io_update
25 sawtooth.enable_sweep_mode("frequency") # Enable linear sweep mode of frequency
26 sawtooth.set_LSRR(8e-9, 8e-9) # Set RSRR and FSRR
27 sawtooth.set_FDW(np.abs(slopes[0]) / sawtooth.sync_frequency , "frequency") # Set FDW
28 sawtooth.set_RDW(490000000, "frequency") # Set RDW
29 sawtooth.set_CW_01(1, upper_points[0], "frequency") # Set upper limit
30 sawtooth.set_FTW(lower_points[0]) # Set lower limit
31 sawtooth.wait_trigger("posedge", True) # Wait for rising edge of trigger
32
33 sawtooth.call_func(4) # Call function
34 for i in np.arange(step, len(lower_points), step):
35 # Change function parameters
36 sawtooth.set_CW_01(1, upper_points[i], "frequency") # Set upper limit
37 sawtooth.set_FTW(lower_points[i]) # Set lower limit
38 sawtooth.set_FDW(np.abs(slopes[i]) / sawtooth.sync_frequency , "frequency", True) # Set

slope
39 sawtooth.call_func(4) # Call function
40
41 sawtooth.disable_sweep_mode() # Set DDS to single tone mode
42 sawtooth.set_FTW(f1, True) # Set FTW
43 sawtooth.end_programm() # End program

Listing 4.3: The function write_old_sawtooth writes the bytecode to create a sawtooth frequency modulation. It
computes the necessary parameters for the signal, such as intersections, slopes, and limits, and creates a sequence

that handles initialization, sweep configurations, and iterative signal generation. The function also dynamically
updates parameters during runtime and ensures precise timing for the generated waveform.

The system developed during this work, was tested by measuring the signal created by write_old_sawtooth
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function using the MSO-X 2024A oscilloscope for the following example parameters.

A =
(
0 µs, 88,8 MHz

)
B =
(
60 µs, 82,8 MHz

)
C =
(
0 µs, 80,8 MHz

)
D =
(
60 µs, 82,8 MHz

)
f0 = 78,8 MHz

f1 = 82,8 MHz

step = 10

The raw signal is shown in the appendix in Figure 2. The resulting frequency over time, as well as the
trigger signal, can be observed in Figure 4.5. The frequency was obtained by performing the Hilbert
transform and calculating the numerical derivative of the smoothed instantaneous phase as explained in
Section 4.1.

In the plot shown in Figure 4.5, the three stages of the signal are clearly visible. Initially, the frequency
remains constant. As soon as the trigger signal transitions from low to high, the frequency rapidly sweeps
upwards. Following this, the frequency oscillates between two values in a sawtooth-like pattern for 10
repetitions, corresponding to the step parameter that was set. After each set of sweeps, the lower limit,
upper limit, and slope are updated, and the sweeping continues with the new parameters.

This behavior demonstrates how the frequency range progressively decreases until the system returns to
single-tone mode 60 µs after the trigger signal is set to high. Figure 4.6 provides a zoomed-in view of the
frequency plot, where the individual sawtooth patterns are clearly distinguishable.

Since the measured signal exhibited a high level of noise, a large bin size of 300 was chosen for the
moving average. This smoothing process causes the sawtooth peaks and rising edges to be smoothed out
and not fully reach the limits expected from the parameters set.

One potential cause of the high noise, aside from the limitations of the oscilloscope, is time jitter in the
system clock of the DDS. The reference clock is generated by the clock wizard in the FPGA, which scales
up the 12 MHz FPGA clock to 100 MHz. This signal is then further upscaled in the DDS to the 500 MHz
system clock. Each of these consecutive upscalings increases the time jitter, potentially contributing to the
observed noise.

In future implementations, the reference clock is planned to be replaced with a more stable source, such
as a crystal oscillator, to reduce time jitter and improve signal quality.

In conclusion, this chapter showcased the capabilities of the developed system in generating precise
and complex waveforms. These results demonstrate the potential of the system to meet the stringent
requirements of modern experimental physics.
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Figure 4.5: The frequency evolution over time for the generated sawtooth signal, as obtained by performing the
Hilbert transform and calculating the numerical derivative of the smoothed instantaneous phase.
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Figure 4.6: Zoom of the frequency evolution over time for the generated sawtooth signal, as obtained by performing
the Hilbert transform and calculating the numerical derivative of the smoothed instantaneous phase.
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CHAPTER 5

Conclusion and Outlook

Conclusion

In this thesis, the development of a waveform generator that works by controlling a commercial Direct
Digital Synthesizer (DDS) board via an FPGA was presented. The work began with a theoretical
discussion of the principles underlying FPGAs and DDS devices. These components were highlighted for
their essential roles in generating high-precision, programmable signals for applications in experimental
physics. Additionally, a brief introduction to Verilog was provided, enabling a basic understanding of the
hardware description language used to program the FPGA.

The implementation of the system was described in detail, including the programming of the FPGA
to execute instructions in a similar manner to a microcontroller, which enabled efficient and flexible
control of the DDS. Additionally a Python class was developed and presented to simplify the creation and
editing of programs for generating signals. This Python class significantly enhanced the usability of the
system, providing a more user-friendly interface for waveform generation and reducing the complexity of
programming tasks.

Examples of generated waveforms were presented, including those specifically created for the Ytterbium
experiment conducted by the Nonlinear Quantum Optics (NQO) research group at the University of Bonn.
In this experiment, the waveform generator was used to drive an Acousto-Optical Modulator (AOM),
which was used to broaden the frequency of a laser in a Magneto-Optical Trap (MOT). This process is
critical for laser-cooling and trapping 174Yb atoms. The successful reproduction of these signals validates
the device’s capability to meet the requirements of this experimental setup.

The design approach used in this project has proven to be successful. The combination of FPGA-based
control and DDS technology has demonstrated its ability to reliably generate complex waveforms. This
underscores the system’s potential as a versatile and cost-effective alternative to commercial waveform
generators, which are often limited in customization and significantly more expensive.
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Outlook

Even though the system has demonstrated its functionality, it remains in a prototype state, and additional of
work is required before it can be fully integrated into experimental setups. While the current Verilog code
operates reliably, it could be optimized and simplified in many areas to improve readability. Simplifying
the code will also make it easier for other users or researchers to adapt and expand the system for additional
use cases.

A custom Printed Circuit Board (PCB) is currently under development. This PCB will consolidate the
necessary electrical components, handle power distribution for the various devices, and route signals
between the components more efficiently. By integrating these elements into a single board, the overall
system design will become more compact and robust for long-term experimental use.

Currently, the speed at which programs are written to the SRAM is significantly slower than the capabilities
of the devices involved. In many experimental setups, the time between measurements available for
resetting and reconfiguring devices is extremely limited. Therefore, it is crucial to substantially increase
the writing speed to ensure the system does not slow down the experimental cycle.

To ensure the system meets the precision requirements of experimental physics, a complete characterization
of its performance is essential. This includes verifying the accuracy of generated frequencies and the
timing precision of signals.

Additional efforts are also needed to provide thorough documentation and a user manual. These resources
will make the system more accessible to other researchers. A well-documented system ensures that future
users can easily understand, operate, and modify the setup as needed.

For integration into the existing experiments of the NQO research group, Python scripts must be developed
to perform the communication between the waveform generator and the experiment control systems.
These scripts will be responsible for fetching parameters from the group’s databases and passing them to
the functions that generate the RF signals.

Currently, the FPGA communicates with the DDS board at half the maximum data transfer speed supported
by the DDS. By optimizing the Verilog code and redesigning certain modules, the communication speed
and time resolution of the system could be doubled. These improvements would significantly enhance the
performance and precision of the waveform generator. However, the priority remains on finalizing a fully
functional first version of the system before approaching these upgrades.

44



Appendix

Mathematical Expression Verilog Syntax Description

C = A ∧ B C = A & B;
Performs a bitwise AND operation
between corresponding bits of oper-
ands A and B.

C = A ∨ B C = A | B;
Performs a bitwise OR operation
between corresponding bits of oper-
ands A and B.

C = A ⊕ B C = A ˆ B;
Performs a bitwise XOR (exclusive
OR) operation between correspond-
ing bits of operands A and B.

C =∼ A C = ~A;
Performs a bitwise NOT operation,
inverting each bit of operand A.

C = A × 2B C = A « B;
Shifts bits of operand A to the left by
B positions, effectively multiplying
A by 2B.

C =
⌊

A
2B

⌋
C = A » B;

Shifts bits of operand A to the right
by B positions, effectively perform-
ing integer division by 2B.

C = A + B C = A + B;
Adds operand A and operand B to-
gether.

C = A − B C = A - B; Subtracts operand B from operand A.

Table 1: Selection of logic and arithmetic operators in Verilog. This table showcases the mathematical expression in
the left and the corresponding Verilog syntax in the middle column as well as a brief description in the right column
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Verilog Syntax Description

&& (logical
AND)

Evaluates to true if bot Robotics Exercises Summary Spelling and Grammar
Check Plotting Timing Diagram
h operands are true; otherwise, evaluates to false.

|| (logical OR)
Evaluates to true if at least one of the operands is true; otherwise, evaluates to
false.

! (logical
NOT)

Inverts the logical value of the operand; true becomes false and false becomes
true.

< (less than)
Compares two operands and evaluates to true if the left operand is less than the
right operand.

> (greater than)
Compares two operands and evaluates to true if the left operand is greater than
the right operand.

Table 2: Selection of logic operators in for conditional expressions in Verilog. This table showcases the Verilog
syntax on the left and a brief description on the right

State Name Number Description
IDLE 0 System is in Idle
OUTPUT 1 System Outputs data to the DDS
UPDATE 2 System sends IO_Update signal
WRITE 3 System is written to
WAIT 4 System waits for time
RESET 6 System is resetting
WAIT_TRIGGER 7 System waits for trigger
JMP 8 System Jumps address
TOGGLE 9 System toggles Pin
WAIT_POS_TRIGGER 10 System waits for rising edge of trigger
WAIT_NEG_TRIGGER 11 System waits for falling edge of trigger
WAIT_EDGE_TRIGGER 12 System waits for either edge of trigger
LOAD_REGISTER 13 System loads internal register

Table 3: State parameter definitions. The table lists the names of the different states, the values they represent, and
brief descriptions.
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Name Hex Value Size in bytes Description
OUTPUT 0x00-0x1F 2-5 Write to DDS register
WAIT 0x20 5 Wait n clock cycles
WAIT_ON_TRIGGER 0x21 1 Wait until trigger is high
JMP 0x22 4 Jump to parameter
TOGGLE_P0 0x23 1 Toggle profile pin 0
TOGGLE_P1 0x24 1 Toggle profile pin 1
TOGGLE_P2 0x25 1 Toggle profile pin 1
TOGGLE_P3 0x26 1 Toggle profile pin 3
SHORT_WAIT 0x27 2 Wait n clock cycles
WAIT_POSEDGE_TRIGGER 0x28 1 Wait for rising edge of trigger
WAIT_NEGEDGE_TRIGGER 0x29 1 Wait for falling edge of trigger
WAIT_EDGE_TRIGGER 0x2A 1 Wait for either edge of trigger
LOAD_LOOP_REGISTER 0x2B 5 Load loop_register
LOAD_LOOP_ADDRESS 0x2C 4 Load loop_address
LOAD_FUNC_ADDRESS 0x2D 4 func_address

BEGIN_LOOP 0x2E 5 starts a loop
END_LOOP 0x2F 1 end of loop
CALL_FUNC 0x30 4 calls function
END_FUNC 0x31 1 end of function (return)
WAIT_1 0x32 1 waits 1 clock cycle
LOAD_WAIT_REGISTER 0x33 5 Loads wait_register
WAIT_FROM_REGISTER 0x34 1 Waits amount of clock cycles stored in

wait_register

LOAD_LOOP_BUFFER 0x35 5 Loads loop_buffer
LOOP_FROM_BUFFER 0x36 1 Loops loop_buffer times
LOAD_FUNC_ADDRESS_BUFFER 0x37 4 Loads func_address_buffer
CALL_FUNC_FROM_BUFFER 0x38 1 Calls function at func_address_buffer
STOP_IDLE 0x7C 1 Sets state to IDLE
WRITE 0x7D 1 sets state to WRITE
RESET 0x7E 1 sets state to RESET
UPDATE 0x7F 1 sets state to UPDATE

Table 4: Full instruction set of the developed FPGA system. The table lists the instruction names, their numeric
representations, and sizes, along with brief descriptions. Detailed lengths and values for the OUTPUT instructions

corresponding to all DDS registers can be found in the AD9959 reference manual [4].
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1 def old_sawtooth(self, A, B, C, D, dt):
2 t_l = np.arange(0, D[0], dt)
3 t_h = t_l + self.FPGA_clk_period
4 A = np.array(A, dtype=np.float64) #typecasting
5 B = np.array(B, dtype=np.float64)
6 C = np.array(C, dtype=np.float64)
7 D = np.array(D, dtype=np.float64)
8
9 a1 = (B[1] - A[1]) / (B[0] - A[0]) # Slope for the first segment

10 a2 = (D[1] - C[1]) / (D[0] - C[0]) # Slope for the second segment
11 b1 = A[1] - A[0] * a1 # Intercept for the first segment
12 b2 = C[1] - C[0] * a2 # Intercept for the second segment
13
14 lower_points = a2 * t_l + b2 # Compute lower intersection points
15 upper_points = a1 * t_h + b1 # Compute upper intersection points
16 slopes = (lower_points[1:] - upper_points[:-1]) / dt # Compute slopes
17
18 return upper_points[:-1], lower_points[1:], slopes

Listing 1: Listing 2: Definition of the old_sawtooth function.

Figure 1: RF signal created by the test program in section 4.1. Measured using the MSO-X 2024A oscilloscope.
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Figure 2: RF signal created by the old_sawtooth program in section 4.2. Measured using the MSO-X 2024A
oscilloscope.
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